Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user’s tapping rhythm. In addition to verifying the RFID card’s identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user’s secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
more »
« less
This content will become publicly available on August 4, 2026
Not-so-Secret Authentication: The SyncBleed Attacks and Defenses for Zero-Involvement Authentication Systems
- Award ID(s):
- 2107020
- PAR ID:
- 10646233
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 592 to 599
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a new multimodal, context-based dataset for continuous authentication. The dataset contains 27 subjects, with an age range of [8, 72], where data has been collected across multiple sessions while the subjects are watching videos meant to elicit an emotional response. Collected data includes accelerometer data, heart rate, electrodermal activity, skin temperature, and face videos. We also propose a baseline approach for fair comparisons when using the proposed dataset. The approach uses a combination of a pretrained backbone network with supervised contrastive loss for face. Time-series features are also extracted, from the physiological signals, which are used for classification. This approach, on the proposed dataset, results in an average accuracy, precision, and recall of 76.59%, 88.90, and 53.25, respectively, on electrical signals, and 90.39%, 98.77, and 75.71, respectively on face videos.more » « less
-
One-time login process in conventional authentication systems does not guarantee that the identified user is the actual user throughout the session. However, it is necessary to re-verify the user identity periodically throughout a login session, which is lacking in existing one-time login systems. In this paper, we introduce a usable and reliable Wearable-Assisted Continuous Authentication (WACA), which relies on the sensor-based keystroke dynamics and the authentication data is acquired through the built-in sensors of a wearable (e.g., smartwatch) while the user is typing. The acquired data is periodically and transparently compared with the registered profile of the initially logged-in user with one-way classifiers. With this, WACA continuously ensures that the current user is the user who logged-in initially. We implemented the WACA framework and evaluated its performance on real devices with real users. The empirical evaluation of WACA reveals that WACA is feasible and its error rate is as low as 1% with 30 seconds of processing time and 2 -3% for 20 seconds. The computational overhead is minimal. Furthermore, WACA is capable of identifying insider threats with very high accuracy (99.2%).more » « less
An official website of the United States government
