skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Effects of Neutron-Antineutron Transitions in Neutron Stars
We analyze effects of neutron-antineutron transitions in neutron stars, specifically on (i) cooling, (ii) rotation rate, and (iii) for binary pulsars, the increase in the orbital period. We show that these effects are negligibly small.  more » « less
Award ID(s):
2210533
PAR ID:
10646496
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
134
Issue:
5
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Highly magnetized neutron stars are promising candidates to explain some of the most peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and superluminous supernovae. Pulsations of these highly magnetized neutron stars are also speculated to produce detectable gravitational waves. In addition, pulsations are important probes of the structure and equation of state of the neutron stars. The major challenge in studying the pulsations of highly magnetized neutron stars is the demanding numerical cost of consistently solving the nonlinear Einstein and Maxwell equations under minimum assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of 1015−17G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics simulations. We show that stellar oscillations are insensitive to magnetization effects until the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode frequencies are strongly suppressed. We further show that this is the direct consequence of the decrease in stellar compactness when the extreme magnetic fields introduce strong deformations of the neutron stars. 
    more » « less
  2. IntroductionThis paper investigates the impact of differential rotation on the bulk properties and onset of rotational instabilities in neutron stars at finite temperatures up to 50 MeV. MethodsUtilizing the relativistic Brueckner-Hartree-Fock (RBHF) formalism in full Dirac space, the study constructs equation of state (EOS) models for hot neutron star matter, including conditions relevant for high temperatures. These finite-temperature EOS models are applied to compute the bulk properties of differentially rotating neutron stars with varying structural deformations. ResultsThe findings demonstrate that the stability of these stars against bar-mode deformation, a key rotational instability, is only weakly dependent on temperature. Differential rotation significantly affects the maximum mass and radius of neutron stars, and the threshold for the onset of bar-mode instability shows minimal sensitivity to temperature changes within the examined range. DiscussionThese findings are crucial for interpreting observational data from neutron star mergers and other high-energy astrophysical events. The research underscores the necessity of incorporating differential rotation and finite temperature effects in neutron star models to predict their properties and stability accurately. 
    more » « less
  3. Abstract Recent gravitational wave (GW) observations include possible detections of black hole—neutron star binary mergers. As with binary black hole mergers, numerical simulations help characterize the sources. For binary systems with neutron star components, the simulations help to predict the imprint of tidal deformations and disruptions on the GW signals. In a previous study, we investigated how the mass of the black hole has an impact on the disruption of the neutron star and, as a consequence, on the shape of the GWs emitted. We extend these results to study the effects of varying the compactness of the neutron star. We consider neutron star compactness in the 0.113–0.2 range for binaries with mass ratios of 3 and 5. As the compactness and the mass ratio increase, the binary system behaves during the late inspiral and merger more like a black hole binary. For the cases with the least compact neutron star, the GWs emitted, in terms of mismatches, are the most distinguishable from those by a binary black hole. The disruption of the star significantly suppresses the kicks on the final black hole. The disruption also affects, although not dramatically, the spin of the final black hole. Lastly, for neutron stars with low compactness, the quasi-normal ringing of the black hole after the merger does not show a clean quasi-normal ringing because of the late accretion of debris from the neutron star. 
    more » « less
  4. Abstract Gravitational-wave observations of binary neutron star mergers provide valuable information about neutron star structure and the equation of state of dense nuclear matter. Numerous methods have been proposed to analyze the population of observed neutron stars, and previous work has demonstrated the necessity of jointly fitting the astrophysical distribution and the equation of state in order to accurately constrain the equation of state. In this work, we introduce a new framework to simultaneously infer the distribution of binary neutron star masses and the nuclear equation of state using Gaussian mixture model density estimates, which mitigates some of the limitations previously used methods suffer from. Using our method, we reproduce previous projections for the expected precision of our joint mass distribution and equation-of-state inference with tens of observations. We also show that mismodeling the equation of state can bias our inference of the neutron star mass distribution. While we focus on neutron star masses and matter effects, our method is widely applicable to population inference problems. 
    more » « less
  5. Abstract Nuclear reactions heat and cool the crust of accreting neutron stars and need to be understood to interpret observations of X-ray bursts and long-term cooling in transiently accreting systems. It was recently suggested that previously ignored neutron transfer reactions may play a significant role in the nuclear processes. We present results from full nuclear network calculations that now include these reactions and determine their impact on crust composition, crust impurity, heating, and cooling. We find that a large number of neutron transfer reactions indeed occur and impact crust models. In particular, we identify a new type of reaction cycle that brings a pair of nuclei across the nuclear chart into equilibrium via alternating neutron capture and neutron release, interspersed with a neutron transfer. While neutron transfer reactions lead to changes in crust model predictions and need to be considered in future studies, previous conclusions concerning heating, cooling, and compositional evolution are remarkably robust. 
    more » « less