The Great Valley Forearc basin of California preserves >15 km of strata deposited during latest Jurassic-earliest Cretaceous to Eocene sedimentation. Along the western margin of the central-northern Great Valley forearc, the oldest basin strata are preserved as an eastward dipping homoclinal belt. Previous work on the thermal history of the western outcrop belt has constrained sub-normal geothermal gradients (<20C/km) during middle Cretaceous to Eocene time related to subduction refrigeration. However, the timing of maximum burial and subsequent exhumation is restricted to a few local studies. This study applies apatite and zircon (U-Th)/He and apatite fission track thermochronology to quantify maximum burial temperatures and the timing and rate of cooling of latest Jurassic-middle Cretaceous strata of the western homocline and neighboring subsurface along 350 km of the basin margin. Zircon (U-Th)/He dates range from ~167 to 85 Ma, which are either older or bracket corresponding depositional ages. Apatite fission track dates range from ~162 to 90 Ma, with the majority of grains between ~110-90 Ma. All apatite (U-Th)/He dates are less than 50 Ma, with most grains yielding dates between ~40-20 Ma. Preliminary integration of these data into thermal history models indicate that maximum burial temperatures did not exceed 120-180 C. The timing of basin cooling ranges based on locality, with the western outcrop yielding rapid exhumation starting between ~100-65 Ma and subsurface cooling at ~50 Ma. Final cooling to modern temperatures, as constrained by apatite (U-Th)/He dates, generally coincides with the transition to a transform margin after ~30 Ma.
more »
« less
This content will become publicly available on December 16, 2026
Preliminary insights into faulting and fluid-rock interactions on the Iberia-Newfoundland margin using low-temperature thermochronology
Hyper-extended, magma-poor rifted margins are characterized by thinned continental crust, exhumed subcontinental mantle, and limited volcanism. The timing of exhumation, particularly mantle exhumation, during the formation of hyper-extended margins has key implications for our geodynamic understanding of the transition from continental breakup to seafloor spreading and the relationship between magmatism, lithospheric extension, and mid-ocean ridge development. We use zircon and apatite from rifted igneous intrusions and lower continental crustal blocks within the exhumed mantle section of the Iberia-Newfoundland margin to track the cooling of these rocks below ~200°C, with implications for fault timing and fluid-rock interactions. Zircon (U-Th)/He data from 8 core samples (from 4 drill holes) exhibit a general younging trend from east to west during the Late Cretaceous, consistent with exhumation driven by a lithosphere-scale, westward-dipping detachment fault. Of 10 apatite (U-Th)/He samples (from 7 drill holes), 5 record Cretaceous cooling, while the remaining 5 indicate Oligo-Miocene cooling, with no clear geographic pattern distinguishing the two populations. Inverse thermal history modeling will be applied to constrain the thermal evolution of the lithosphere during hyperextension. These models can indirectly constrain the timing at which the lithosphere entered the thermal window conducive to serpentinization and ophicalcite formation with implications for lithospheric rheology, thermal structure, and the potential habitability of subsurface environments for ancient microbial life.
more »
« less
- Award ID(s):
- 2049848
- PAR ID:
- 10646547
- Publisher / Repository:
- AGU Annual Meeting
- Date Published:
- Format(s):
- Medium: X
- Location:
- New Orleans, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced a complex >2.5 Gyr thermal history related to the long‐term geodynamic evolution of Laurentia. We constrain this history using “deep‐time” thermochronology, reporting zircon U‐Pb, biotite40Ar/39Ar, and zircon and apatite [U‐Th(‐Sm)]/He results from three transects across the basement‐core of the range. Our central transect yielded a zircon U‐Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite40Ar/39Ar plateau ages from western samples are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U‐Th)/He dates span 686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation damage. Apatite (U‐Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. Multi‐chronometer Bayesian time‐temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat‐slab subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; (g) Post‐20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize the utility of multi‐chronometer thermochronology in recovering complex, non‐monotonic multi‐billion‐year thermal histories.more » « less
-
Abstract The northwest-trending transition zone (TZ) in Arizona (southwestern United States) is an ~100-km-wide physiographic province that separates the relatively undeformed southwestern margin of the Colorado Plateau from the hyperextended Basin and Range province to the southwest. The TZ is widely depicted to have been a Late Cretaceous–Paleogene northeast-dipping erosional slope along which Proterozoic rocks were denuded but not significantly deformed. Our multi-method thermochronological study (biotite 40Ar/39Ar, zircon and apatite [U-Th-Sm]/He, and apatite fission track) of Proterozoic rocks in the Bradshaw Mountains of the west-central Arizona TZ reveals relatively rapid cooling (~10 °C/m.y.) from temperatures of >180 °C to <60 °C between ca. 70 and ca. 50 Ma. Given minimal ca. 70–50 Ma upper-crustal shortening in the TZ, we attribute cooling to exhumation driven by northeastward bulldozing of continental lower crust and mantle lithosphere beneath it by the Farallon flat slab. Bulldozing is consistent with contemporaneous (ca. 70–50 Ma) underplating and initial exhumation of Orocopia Schist to the southwest in western Arizona and Mesozoic garnet-clinopyroxenite xenoliths of possible Mojave batholith keel affinity in ca. 25 Ma TZ volcanic rocks.more » « less
-
Abstract Low‐temperature thermochronometric data can reveal the long‐term evolution of erosion, uplift, and thrusting in fold‐thrust belts. We present results from central Idaho and southwestern Montana, where the close spatial overlap of the Sevier fold‐thrust belt and Laramide style, basement‐involved foreland uplifts signify a complex region with an unresolved, long‐term tectono‐thermal history. Inverse QTQt thermal history modeling of new zircon (U‐Th)/He (ZHe,n = 106), and apatite (U‐Th)/He dates (AHe,n = 43) collected from hanging walls of major thrusts systems along a central Idaho to southwestern Montana transect, and apatite fission track results from 6 basement samples, reveal regional thermal and spatial trends related to Sevier and Laramide orogenesis. Inverse modeling of foreland basement uplift samples suggest Phanerozoic exhumation initiated as early as ∼80 Ma and continued through the early Paleogene. Inverse modeling of interior Idaho fold‐thrust belt ZHe samples documents Early Cretaceous cooling at ∼125 Ma in the Lost River Range (western transect), and a younger cooling episode in the Lemhi Arch region (mid‐transect) at ∼90–80 Ma through the late Paleogene. This cooling in the Lemhi Arch temporally overlaps with cooling in southwestern Montana's basement‐cored uplifts, which we interpret as roughly synchronous exhumation related to contractional tectonics and post‐orogenic collapse. These data and models, integrated with independent timing constraints from foreland basin strata and previously published thermochronometric results, suggests that middle Cretaceous deformation of southwestern Montana's basement‐cored uplifts was low magnitude and preceded tectonism along the classic Arizona‐Wyoming Laramide “corridor.” In contrast, Late Cretaceous and Paleogene thrust‐related exhumation was more significant and largely complete by the Eocene. The basement‐involved deformation was contemporaneous with and younger than along‐strike Sevier belt thrusting in central Idaho.more » « less
-
We interpret the kinematics of the Tangra Yumco (TYC) rift by evaluating spatiotemporal trends in fault displacement, extension onset, and exhumation rates. We present new geologic mapping, U-Pb geochronology, zircon (U-Th)/He (ZHe) thermochronology, and HeFTy thermal modeling results that are critical to testing dynamic models of extension in Tibet. The TYC rift is bounded by two NNE striking (~N10°E-N35°E) high angle (~45-70°) active normal faults that alternate dominance along strike. Footwall granodiorites show foliation, slip lineation, and fault plane striation measurements indicative of northeast directed oblique sinistral-normal slip. In North and South TYC, hanging wall deposits are cut by a series of active high-angle normal faults which likely sole into a master fault at depth, while in central TYC, hanging wall deposits display synthetic graben structures potentially indicative of low-angle faulting. Analysis of ~50 samples collected across key structural relationships in and around TYC yield 14 mean U-Pb dates between ~59-49 Ma and ~190 single-grain ZHe dates between ~60-4 Ma with spatial trends in ZHe data correlating strongly with latitude. Samples from Gangdese latitudes show a concentration of ~28-15 Ma ages, while those north of ~29.8° latitude yield both younger (~9-4 Ma) and older (~59-45 Ma) ages. We interpret (1) Gangdese Range samples reflect exhumation during contraction and uplift along the GCT peaking at ~21-20 Ma, (2) ~9-4 Ma ages reveal extension timing along fault segments experiencing significant rift-related exhumation, and (3) ~59-45 Ma ages represent un-reset or partially-reset samples from fault segments that have experienced lesser magnitudes of rift exhumation. HeFTy thermal models indicate a two-stage cooling history with initial slow cooling followed by accelerated cooling rates in Late Miocene-Pliocene time (~13-4 Ma) consistent with prior results from TYC and other Tibetan rifts. Our data are consistent with a segment linkage fault evolution model for the TYC rift, with underthrusting of Indian lithosphere likely related to the northward acceleration of rifting. Future work will utilize advanced HeFTy modeling including U-Pb and apatite fission track data to further constrain the exhumation history of TYC and test dynamic models of extension for southern Tibet.more » « less
An official website of the United States government
