skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active spiralling of microtubules driven by kinesin motors
Cytoskeletal filaments propelled by surface-bound motor proteins can be viewed as active polymers, a class of active matter. When constraints are imposed on their movements, the propelled cytoskeletal filaments show dynamic patterns distinct from equilibrium conformations. Pinned at their leading ends, propelled microtubules or actin filaments form rotating spirals, whose shape is determined by the interplay between motor forces and the mechanics of the cytoskeletal filaments. We simulated the spiral formations of microtubules propelled by kinesin motors in an overdamped dynamics framework, which in addition to the mechanics of the spiralling microtubule explicitly includes the mechanics of kinesin motors. The simulation revealed that spiral formation was initiated by localized buckling of microtubules near the pinned ends, and the conditions for occurrence of spiral formation were summarized in a phase diagram. The radius of the formed spirals scaled with the surface motor density with an exponent of approximately − 1/4, distinct from previous theoretical and simulation studies based on implicit modelling of motor proteins. This result can be understood as a consequence of the contributions of kinesin motors to the total elastic deformation energy, highlighting the importance of mechanics of motor proteins in the behaviour of the active polymers. These findings can be useful in accurate modelling of active polymers and in designing active polymer-based applications such as molecular shuttles driven by motor proteins.  more » « less
Award ID(s):
2230116
PAR ID:
10646550
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
15
Issue:
1
ISSN:
2045-2322
Page Range / eLocation ID:
20318
Subject(s) / Keyword(s):
Active polymer, Cytoskeletal filaments, Motor proteins, Computer simulation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams. 
    more » « less
  2. Abstract The cytoskeleton is an active composite of filamentous proteins that dictates diverse mechanical properties and processes in eukaryotic cells by generating forces and autonomously restructuring itself. Enzymatic motors that act on the comprising filaments play key roles in this activity, driving spatiotemporally heterogeneous mechanical responses that are critical to cellular multifunctionality, but also render mechanical characterization challenging. Here, we couple optical tweezers microrheology and fluorescence microscopy with simulations and mathematical modeling to robustly characterize the mechanics of active composites of actin filaments and microtubules restructured by kinesin motors. It is discovered that composites exhibit a rich ensemble of force response behaviors–elastic, yielding, and stiffening–with their propensity and properties tuned by motor concentration and strain rate. Moreover, intermediate kinesin concentrations elicit emergent mechanical stiffness and resistance while higher and lower concentrations exhibit softer, more viscous dissipation. It is further shown that composites transition from well‐mixed interpenetrating double‐networks of actin and microtubules to de‐mixed states of microtubule‐rich aggregates surrounded by relatively undisturbed actin phases. It is this de‐mixing that leads to the emergent mechanical response, offering an alternate route that composites can leverage to achieve enhanced stiffness through coupling of structure and mechanics. 
    more » « less
  3. The spontaneous formation of contractile asters is ubiquitous in reconstituted active materials composed of biopolymers and molecular motors. Asters are radially oriented biopolymers or biopolymer bundles with a dense motor-rich core. The microscopic origins of their material properties and their stability are unknown. Recent efforts highlighted how motor-filament and filament-filament interactions control the formation of asters composed of microtubules and kinesin motors. However, the impact of motor-motor interactions is less understood, despite growing evidence that molecular motors often spontaneously aggregate, both and . In this article, we combine experiments and simulations to reveal the origin of the arrested coarsening, aging, and stability of contractile asters composed of microtubules, clusters of adenosine triphosphate (ATP)-powered kinesin-1 motors, and a depletant. Asters coalesce into larger asters upon collision. We show that the spontaneous aggregation of motor clusters drives the solidification of aster cores, arresting their coalescence. We detect aggregation of motor clusters at the single microtubule level, where the uncaging of additional ATP drives the delayed but sudden detachment of large motor aggregates from isolated microtubules. Computer simulations of cytoskeletal assemblies demonstrate that decreasing the motors' unbinding rate slows down the aster's coalescence. Changing the motors' binding rate did not impact the aster's coalescence dynamics. Finally, we show that the aggregation of motor clusters and aster aging result from the combined effects of depletion forces and nonspecific binding of the clusters to themselves. We propose alternative formulations that mitigate these effects, and prevent aster aging. The resulting self-organized structures have a finite lifetime, which reveals that motor aggregation is crucial for maintaining aster's stability. Overall, these experiments and simulations enhance our understanding of how to rationally design long-lived and stable contractile materials from cytoskeletal proteins. Published by the American Physical Society2025 
    more » « less
  4. Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein–protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5′-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials. 
    more » « less
  5. Merks, Roeland M.H. (Ed.)
    In cells, multiple molecular motors work together as teams to carry cargoes such as vesicles and organelles over long distances to their destinations by stepping along a network of cytoskeletal filaments. How motors that typically mechanically interfere with each other, work together as teams is unclear. Here we explored the possibility that purely physical mechanisms, such as cargo surface fluidity, may potentially enhance teamwork, both at the single motor and cargo level. To explore these mechanisms, we developed a three dimensional simulation of cargo transport along microtubules by teams of kinesin-1 motors. We accounted for cargo membrane fluidity by explicitly simulating the Brownian dynamics of motors on the cargo surface and considered both the load and ATP dependence of single motor functioning. Our simulations show that surface fluidity could lead to the reduction of negative mechanical interference between kinesins and enhanced load sharing thereby increasing the average duration of single motors on the filament. This, along with a cooperative increase in on-rates as more motors bind leads to enhanced collective processivity. At the cargo level, surface fluidity makes more motors available for binding, which can act synergistically with the above effects to further increase transport distances though this effect is significant only at low ATP or high motor density. Additionally, the fluid surface allows for the clustering of motors at a well defined location on the surface relative to the microtubule and the fluid-coupled motors can exert more collective force per motor against loads. Our work on understanding how teamwork arises in cargo-coupled motors allows us to connect single motor properties to overall transport, sheds new light on cellular processes, reconciles existing observations, encourages new experimental validation efforts and can also suggest new ways of improving the transport of artificial cargo powered by motor teams. 
    more » « less