skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 18, 2026

Title: A Distance Conjecture for branes
We use branes to generalize the Distance Conjecture. We conjecture that in any infinite-distance limit in the moduli space of a d-dimensional quantum gravity theory, among the set of particle towers and fundamental branes with at most pmax spacetime dimensions (where pmax is an integer between 1 and d-2), at least one has mass/tension decreasing exponentially T ~ exp(–α ∆) with the moduli space distance ∆ at a rate of at least α ≥ 1/sqrt(d-pmax-1). Since pmax can vary, this represents multiple conditions, where the Sharpened Distance Conjecture is the pmax = 1 case. This conjecture is a necessary condition imposed on higher-dimensional theories in order for the Sharpened Distance Conjecture to hold in lower-dimensional theories. We test our conjecture in theories with maximal and half-maximal supersymmetry in diverse dimensions, finding that it is satisfied and often saturated. In some cases where it is saturated — most notably, heterotic string theory in 10 dimensions — we argue that novel, low-tension non-supersymmetric branes must exist. We also identify patterns relating the rates at which various brane tensions vary in infinite-distance limits and relate these tensions to the species scale.  more » « less
Award ID(s):
2112800 2412570
PAR ID:
10646705
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The Distance Conjecture holds that any infinite-distance limit in the scalar field moduli space of a consistent theory of quantum gravity must be accompanied by a tower of light particles whose masses scale exponentially with proper field distance ‖ ϕ ‖ as m ~ exp(− λ ‖ ϕ ‖), where λ is order-one in Planck units. While the evidence for this conjecture is formidable, there is at present no consensus on which values of λ are allowed. In this paper, we propose a sharp lower bound for the lightest tower in a given infinite-distance limit in d dimensions: λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 . In support of this proposal, we show that (1) it is exactly preserved under dimensional reduction, (2) it is saturated in many examples of string/M-theory compactifications, including maximal supergravity in d = 4 – 10 dimensions, and (3) it is saturated in many examples of minimal supergravity in d = 4 – 10 dimensions, assuming appropriate versions of the Weak Gravity Conjecture. We argue that towers with λ < $$ 1/\sqrt{d-2} $$ 1 / d − 2 discussed previously in the literature are always accompanied by even lighter towers with λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 , thereby satisfying our proposed bound. We discuss connections with and implications for the Emergent String Conjecture, the Scalar Weak Gravity Conjecture, the Repulsive Force Conjecture, large-field inflation, and scalar field potentials in quantum gravity. In particular, we argue that if our proposed bound applies beyond massless moduli spaces to scalar fields with potentials, then accelerated cosmological expansion cannot occur in asymptotic regimes of scalar field space in quantum gravity. 
    more » « less
  2. We study towers of light particles that appear in infinite-distance limits of moduli spaces of 9-dimensional 𝒩=1 string theories, some of which notably feature decompactification limits with running string coupling. The lightest tower in such decompactification limits consists of the non-BPS Kaluza-Klein modes of Type I′ string theory, whose masses depend nontrivially on the moduli of the theory. We work out the moduli-dependence by explicit computation, finding that despite the running decompactification the Distance Conjecture remains satisfied with an exponential decay rate ⍺ ≥ 1/√(d-2) in accordance with the sharpened Distance Conjecture. The related sharpened Convex Hull Scalar Weak Gravity Conjecture also passes stringent tests. Our results non-trivially test the Emergent String Conjecture, while highlighting the important subtlety that decompactifcation can lead to a running solution rather than to a higher-dimensional vacuum. 
    more » « less
  3. The Sharpened Distance Conjecture and Tower Scalar Weak Gravity Conjecture are closely related but distinct conjectures, neither one implying the other. Motivated by examples, I propose that both are consequences of two new conjectures: 1. The infinite distance geodesics passing through an arbitrary point ϕ in the moduli space populate a dense set of directions in the tangent space at ϕ. 2. Along any infinite distance geodesic, there exists a tower of particles whose scalar-charge-to-mass ratio (–∇log m) projection everywhere along the geodesic is greater than or equal to 1/√(d-2). I perform several nontrivial tests of these new conjectures in maximal and half-maximal supergravity examples. I also use the Tower Scalar Weak Gravity Conjecture to conjecture a sharp bound on exponentially heavy towers that accompany infinite distance limits. 
    more » « less
  4. A<sc>bstract</sc> For any unitary conformal field theory in two dimensions with the central chargec, we prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes in some limit on the conformal manifold, the Zamolodchikov distancetto the limit is infinite, the approach to this limit is exponential ∆ = exp(−αt+O(1)), and the decay rate obeys the universal boundsc−1/2≤α≤ 1. In the limit, we also find that an infinite tower of primary operators emerges without a gap above the vacuum and that the conformal field theory becomes locally a tensor product of a sigma-model in the large radius limit and a compact theory. As a corollary, we establish a part of the Distance Conjecture about gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds onαindicate that the emergence of exponentially light states is inevitable as the moduli field corresponding totrolls beyond the Planck scale along the steepest path and that this phenomenon can begin already at the curvature scale of the bulk geometry. We also comment on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat space limit and compare with the Sharpened Distance Conjecture. 
    more » « less
  5. I consider flat slices of moduli spaces where the (–∇ log T)-vectors of particle-towers and branes are constant, and I show that the Emergent String Conjecture constrains these vectors to reside on lattices. In asymptotic limits, this results in exponentially separated, discretized hierarchies of energy scales. I further identify conditions that determine whether a given lattice site must be populated, and I show that only a finite set of configurations satisfies these conditions. I classify all such configurations for 0d, 1d, and 2d moduli spaces in theories with 3 to 11 spacetime dimensions, and I argue that 11d is the maximal spacetime dimension compatible with my assumptions. Remarkably, this classification reproduces the detailed particle and brane content of various string theory examples with 32, 16, and 8 supercharges. It also describes some examples where the assumptions I use are violated, suggesting that my assumptions can be relaxed and the scope of this classification can be expanded. It might also predict new branes. For instance, if heterotic string theory is described by this classification, then it must possess non-BPS branes with D-brane-like tensions. Similarly, if this classification applies to the Dark Dimension Scenario with an extra modulus, then it requires the existence of strings with tensions related to the cosmological constant by T ≲ Λ^(1/6) in 4d Planck units. 
    more » « less