The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each α-helix, β-sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure–dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure–dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure–dynamics of biomolecular solvation.
more »
« less
This content will become publicly available on October 21, 2026
Hydration of tryptophan probed by triplet lifetime isotope effect
Water plays an essential role in the structures, dynamics, and functions of proteins. The experimental determination of the presence of water in proteins remains a challenge. Tryptophan and its derivatives are well-studied molecules whose photophysical properties are sensitive to the local environment. In particular, the lifetime of the triplet state is impacted by the presence of nearby water via coupling to high-frequency vibrational modes of solvent. The ratio of the indole triplet lifetimes in D2O and H2O (τD/τH), called the triplet lifetime isotope effect (3LIE), is 1.6. The feasibility of using measurements of 3LIE to assess hydration of tryptophan residues in proteins was explored, with focus on a membrane-associated model compound, tryptophan octyl-ester; soluble proteins, human serum albumin and ribonuclease T1; the membrane peptide melittin; a leucine-rich synthetic membrane peptide we call leucimer; and the membrane protein outer membrane protein A. The results indicate that while there is variation in the triplet lifetimes depending on the local environment, the value of 3LIE reflects the absence (3LIE = 1.0) or presence (3LIE > 1.0) of nearby water. Molecular dynamics simulations support this interpretation. The mechanism and number of water O–H bonds that couple to the triplet state were explored. These findings suggest that measurements of 3LIE can be applied to directly monitor changes in the hydration of proteins.
more »
« less
- Award ID(s):
- 2004081
- PAR ID:
- 10646707
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 163
- Issue:
- 15
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Considerable efforts have been devoted to the development of spectroscopic probes that are sensitive to water and can be used to monitor, for example, biological and chemical processes involving dehydration or hydration. Continuing this line of research, herein we show that 7-cyanoindole can serve as a sensitive fluorescence probe of hydration as its fluorescence properties, including intensity, peak wavelength and lifetime, depend on the amount of water in nine water–organic solvent mixtures. Our results indicate that 7-cyanoindole is not only able to reveal the underlying microheterogeneity of these binary solvent systems, but also offers distinct advantages. These include: (1) its fluorescence intensity increases more than ten times upon going from a hydrated to a dehydrated environment; (2) its peak wavelength shifts as much as 35 nm upon dehydration; (3) its single-exponential fluorescence decay lifetime increases from 2.0 ns in water to 8–16 ns in water–organic binary mixtures, making it viable to distinguish between differently hydrated environments via fluorescence lifetime measurements; and (4) its absorption spectrum is significantly red-shifted from that of indole, making selective excitation of its fluorescence possible in the presence of naturally occurring amino-acid fluorophores. Moreover, we find that for seven binary mixtures the fluorescence lifetimes of 7-cyanoindole measured at solvent compositions where maximum microheterogeneity occurs correlate linearly with the peak wavenumbers of its fluorescence spectra obtained in the respective pure organic solvents. This suggests that the microheterogeneities of these binary mixtures bear certain similarity, a phenomenon that warrants further investigation.more » « less
-
Bernd Reif (Ed.)It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.more » « less
-
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F−, Cl−, Br−) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.more » « less
-
Atomistic molecular dynamics simulations of concentrated protein solutions in the presence of a phospholipid bilayer are presented to gain insights into the dynamics and interactions at the cytosol–membrane interface. The main finding is that proteins that are not known to specifically interact with membranes are preferentially excluded from the membrane, leaving a depletion zone near the membrane surface. As a consequence, effective protein concentrations increase, leading to increased protein contacts and clustering, whereas protein diffusion becomes faster near the membrane for proteins that do occasionally enter the depletion zone. Since protein–membrane contacts are infrequent and short-lived in this study, the structure of the lipid bilayer remains largely unaffected by the crowded protein solution, but when proteins do contact lipid head groups, small but statistically significant local membrane curvature is induced, on average.more » « less
An official website of the United States government
