skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Mitigation of Motor Reflected Overvoltage Fed by SiC Drives—A New Solution Based on Smart Coils
While wide bandgap (WBG) switches have revolutionized power electronics and motor-drive systems, the high dv/dt associated with these fast-switching semiconductors can easily induce reflected high-frequency overvoltage spikes on motor stator terminals. The shorter rise time of the voltage pulses confines the cable length between the inverter and the motor in practice to avoid overvoltage across the motor stator windings. Even with shorter cables, voltage spikes from variable-speed drives can still cause premature insulation failure and reduce the remaining useful lifetime of the motors. While effective, conventional methods such as dv/dt passive filters or active gate drivers are usually bulky and/or inefficient. To address this problem, an overvoltage mitigation solution, named “Smart Coil,” is introduced in this article. The smart coil circuit is installed in parallel with the first coil of each motor phase, which typically experiences the highest reflected overvoltage. Upon detection of overvoltage, the proposed ultracompact smart coil circuit, located at the motor junction box, is activated to limit voltage stress across the coils. Since the smart coil is connected in parallel with the first coil, it only needs to process very low pulsed power during the overvoltage transients. Therefore, it has high efficiency and an ultracompact footprint while effectively mitigating voltage spikes. The proposed smart coil circuit can be easily scaled for various motor-drive systems regardless of the cable length or rise time of the switching devices. Simulation and experimental test results are provided to verify the effectiveness of the proposed method.  more » « less
Award ID(s):
2545567
PAR ID:
10646805
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Power Electronics
Volume:
40
Issue:
3
ISSN:
0885-8993
Page Range / eLocation ID:
4335 to 4344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High dv/dt from the emerging SiC variable-frequency drives can easily induce overvoltage across the motor stator winding terminals, especially for long-cable-connected and high-voltage motor-drive systems. Due to the fast switching speed and surge impedance mismatch between cables and motors, this overvoltage can be two times or even higher than the DC-bus voltage of the inverter, resulting in motor insulation degradation or irreversible breakdown. The most common solution to mitigate such overvoltage is to install a dv/dt or a sinewave filter at the output of the drive, which decreases the efficiency and power density of the system. Among different stator coils, the first one (close to the drive side) is the most susceptible to insulation breakdown since it experiences higher overvoltage than the others due to the nonlinear distribution of the reflected surge voltages. In this paper, an innovative high-efficiency ultracompact mitigation solution is introduced, which is a tiny auxiliary circuit embedded inside the motor stator (or at the motor terminal box), specifically across the first few coils of each phase (i.e., smart coils). The proposed smart coil circuit effectively mitigates the surge overvoltage, which can be scalable to any type of motor-drive systems, regardless of cable length and semiconductor rise time. The proposed solution can dramatically improve the reliability, efficiency, and power density of motor-drive systems. 
    more » « less
  2. High-performance switching devices like SiC MOSFETs introduce high-frequency ringing and overvoltage transients at motor terminals, leading to uneven voltage distribution across windings. In SiC-driven motors, the first coil and initial turns experience significant overvoltage stress, increasing the risk of insulation degradation and inter-turn faults. This study proposes an analog circuit to mitigate overvoltage stress. The circuit detects high dv/dt in the first coil and adaptively inserts a ceramic capacitor via a GaN switch, forming a low-impedance path for high-frequency currents. This diverts part of the transient energy to the second coil, reducing stress on the first coil and promoting uniform voltage distribution. The GaN switch remains closed to sustain the high-frequency current path through the capacitor, adapting to different operating conditions and cable lengths. The circuit was prototyped and experimentally validated on a 2hp induction motor driven by a SiC inverter, demonstrating its effectiveness in mitigating overvoltage stress. This compact solution enhances the reliability of SiC-driven motor systems by addressing uneven high-frequency voltage distribution. 
    more » « less
  3. The increasing interest in employing wide-bandgap (WBG) drive systems has brought about very high power, high-frequency inverters enjoying switching frequencies up to hundreds of kilohertz. However, voltage surges with steep fronts, caused by turning semiconductor switches on/off in inverters, travel through the cable and are reflected at interfaces due to impedance mismatches, giving rise to overvoltages at motor terminals and in motor windings. The phenomena typically associated with these repetitive overvoltages are partial discharges and heating in the insulation system, both of which contribute to insulation system degradation and may lead to premature failures. In this article, taking the mentioned challenges into account, the repetitive transient overvoltage phenomenon in WBG drive systems is evaluated at motor terminals and in motor windings by implementing a precise multiconductor transmission line (MCTL) model in the time domain considering skin and proximity effects. In this regard, first, a finite element method (FEM) analysis is conducted in COMSOL Multiphysics to calculate parasitic elements of the motor; next, the vector fitting approach is employed to properly account for the frequency dependency of calculated elements, and, finally, the model is developed in EMTP-RV to assess the transient overvoltages at motor terminals and in motor windings. As shown, the harshest situation occurs in turns closer to motor terminals and/or turns closer to the neutral point depending on whether the neutral point is grounded or floating, how different phases are connected, and how motor phases are excited by pulse width modulation (PWM) voltages. 
    more » « less
  4. Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor winding failure. This study proposes a wideband (WB) model of EV cables, developed in EMTP-RV, to improve transient voltage prediction accuracy compared to the traditional constant parameter (CP) model. Using a commercially available EV-dedicated cable, the WB model incorporates frequency-dependent parasitic effects calculated through the vector fitting technique. The motor design is supported by COMSOL Multiphysics and MATLAB 2023 simulations, leveraging the multi-conductor transmission line (MCTL) model for validation. Using practical data from the Toyota Prius 2010 model, including cable length, motor specifications, and power ratings, transient overvoltages generated by high-frequency inverters are studied. The proposed model demonstrates improved alignment with real-world scenarios, providing valuable insights into optimizing insulation systems for EV applications. 
    more » « less
  5. Due to its fast switching speed, the voltage sharing of series-connected SiC MOSFETs is more sensitive to the parasitic components from the power modules and the system, which results in more challenges for voltage balancing control. For two series-connected SiC MOSFETs realized by one half-bridge module, the detailed analysis and measurement indicate that the unbalanced parasitic capacitors inside the power module comprise the dominant factor causing the difference of turn-off dv/dt. In this paper, the traditional gate turn-off delay-time control is first used as an example to analyze the limitation of the existing active voltage balancing (AVB) control methods under AC load current: 1) AVB control has a limitation to adjust delay time accurately under AC current; 2) the voltage imbalance of the body diodes cannot be solved by AVB control. To achieve voltage balancing control of series-connected SiC MOSFETs and body diodes, this paper proposes a new two-part hybrid approach: 1) passive dv/dt compensation: one small compensation capacitor is applied to balance the non-uniform distribution of parasitic capacitors inside the power module, so the series-connected MOSFETs can have the same turn-off dv/dt; 2) active gate signal turn-off time adjustment: a closed-loop delay time control is applied to compensate the gate signal mismatch of MOSFETs. To verify the proposed balancing approach, a single-phase pump-back test is conducted to show the improvement of voltage sharing of both MOSFETs and body diodes. 
    more » « less