skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Exploration of the Fusidic Acid Structure Activity Space for Antibiotic Activity
Fusidic acid is a translation inhibitor with activity against major Gram-positive bacterial pathogens such as S. aureus. However, its activity against Gram-negatives is poor based on an inability to access its cytoplasmic target in these organisms. Opportunities for functionalization of the fusidic acid scaffold to enhance activity against Gram-negative pathogens have not been explored. Using an activity-guided synthetic strategy, the tolerance of the tetracyclic natural product to derivatization at the A- and C-rings and its carboxylic acid side chain was explored with the goal of enhancing its activity spectrum and pharmacological properties. All side-chain carboxylic acid esters were inactive. Oxidation of the C-ring alcohol and oxime were not tolerated either. A number of esters of the A-ring alcohol retained modest activity against Gram-positive bacteria and were informative for future activity-guided studies. For the A-ring esters, differences in antibacterial activity relative to inhibitory activity in a ribosome in vitro translation assay suggested the possibility of a pro-druglike effect for the fusidic acid pyrazine-2-carboxylate. This study furthers the understanding of the activity of the fusidic acid scaffold against Gram-positive bacteria. These results suggest promise for future modification of the A-ring alcohol of fusidic acid in the advancement of its antibiotic properties.  more » « less
Award ID(s):
2400110 1757078 2102649
PAR ID:
10646859
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molecules
Volume:
30
Issue:
3
ISSN:
1420-3049
Page Range / eLocation ID:
465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new bicyclic diterpenoid, benditerpenoic acid, was isolated from soil‐dwellingStreptomycessp. (CL12‐4). We sequenced the bacterial genome, identified the responsible biosynthetic gene cluster, verified the function of the terpene synthase, and heterologously produced the core diterpene. Comparative bioinformatics indicated thisStreptomycesstrain is phylogenetically unique and possesses nine terpene synthases. The absolute configurations of the newtrans‐fused bicyclo[8.4.0]tetradecanes were achieved by extensive spectroscopic analyses, including Mosher's analysis,J‐based coupling analysis, and computations based on sparse NMR‐derived experimental restraints. Interestingly, benditerpenoic acid exists in two distinct ring‐flipped bicyclic conformations with a rotational barrier of ≈16 kcal mol−1in solution. The diterpenes exhibit moderate antibacterial activity against Gram‐positive bacteria including methicillin and multi‐drug resistantStaphylococcus aureus. This is a rare example of an eunicellane‐type diterpenoid from bacteria and the first identification of a diterpene synthase and biosynthetic gene cluster responsible for the construction of the eunicellane scaffold. 
    more » « less
  2. Abstract Synthetic investigations of natural products has been instrumental in the development of novel antibacterial small molecules. 1‐hydroxyboivinianin A, a lactone containing phenolic bisabolane isolated from marine sediment, has reported antibacterial activity against the aquatic pathogenVibrio harveyi. The total synthesis of 1‐hydroxyboivinianin A and its enantiomer was completed in a six‐step sequence in 42 % overall yield. The synthesis leveraged a key diastereoselective nucleophilic addition with chiral imidazolidinone to establish the benzylic tertiary alcohol and intramolecular Horner‐Wadsworth Emmons to furnish the lactone. Both enantiomers were found to have negligible antibacterial activity against a panel of gram‐positive and negative bacteria and minimal antifungal activity against phytopathogens. Investigations of a possiblein vitrolactone hydrolysis to produce an inactive linear acid led to the discovery of a spontaneous cyclization, suggesting the lactone is resistant to hydrolysis and the lactone is not degrading to produce an inactive species. 
    more » « less
  3. Abstract Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such asEscherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such asStaphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such asS. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry 
    more » « less
  4. According to the CDC, there are more than 2.8 million antibiotic resistant infections occurring in the United States each year, and more than 35,000 people die as a result (CDC 2019). Furthermore, the CDC classifies a group of bacteria known as ESKAPE pathogens as six emerging antibiotic-resistant pathogens that are difficult to eradicate with current antibiotics. Our study aims to identify and characterize soil-derived microorganisms with the potential to produce antimicrobial compounds effective against safe relatives of ESKAPE pathogens, with the goal of translating these findings to combat their pathogenic counterparts. We hypothesize that bacteria identified from the soil will inhibit the growth of the following nosocomial associated safe relatives Bacillus subtilis for E. faecium, Staphylococcus epidermidis for S. aureus, Escherichia coli for Klebsiella pneumoniae, Acinetobacter baylyi for A. baumannii, Pseudomonas putida for P. aeruginosa, and Enterobacter aerogenes for Enterobacter species. To test our hypothesis, soil samples were collected from Fayetteville State University (FSU) campus and serially diluted onto LB agar plates. Sixty-three distinct colonies were isolated and screened against non-pathogenic ESKAPE safe relatives. Of the 63 Fayetteville State University soil isolates (FSIs) screened, 12 (19%) exhibited antimicrobial activity against at least one of the six ESKAPE safe relatives, with all 12 inhibiting Acinetobacter baylyi and only FSI 15 demonstrating broad-spectrum inhibition. Characterization assays revealed that 11 of the 12 isolates were Gram-negative, catalase-positive, and motile; the single Gram-positive isolate (FSI 4) was catalase-negative and non-motile. All isolates displayed resistance to penicillin, while most remained susceptible to tetracycline and ciprofloxacin. These findings support our hypothesis that soil-derived bacteria can produce putative antimicrobial compounds effective against non-pathogenic ESKAPE safe relatives. This study underscores the potential of soil microbiota on the campus of Fayetteville State University as a source of novel antimicrobial agents capable of inhibiting antibiotic resistant ESKAPE pathogens and warrant further investigation into their therapeutic potential 
    more » « less
  5. Abstract The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure‐activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome‐based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x–7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram‐positive bacteriumB. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE‐binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids. 
    more » « less