skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal Evolution of Volcanism in the Black Rock Desert Volcanic Field, Utah, and Its Migration Relative to the Colorado Plateau
Abstract In the southwest USA, the Colorado Plateau is encircled by Late Cenozoic volcanic fields, most of which have eruptive histories that are marginally constrained. Establishing the spatiotemporal evolution of these volcanic fields is key for quantifying volcanic hazards and understanding magma genesis. The Black Rock Desert (BRD) volcanic field covers ∼700 km2of west‐central Utah. We present 46 new40Ar/39Ar ages from the BRD ranging from 3.7 Ma to 8 ka, which includes40Ar/39Ar plateau ages from olivine separates. These new ages are combined with 13 recently published40Ar/39Ar ages from the Mineral Mountains to evaluate the spatiotemporal evolution of all five BRD subfields. The oldest lavas and domes are located to the southwest, whereas the youngest lavas, which are only a few hundred years old, are located ∼30 km to the NNE. However, BRD vent migration patterns over the last 2.5 Ma are non‐uniform. They are also not consistent with North American Plate motion over a partial melt zone nor have they migrated toward the center of the Colorado Plateau. BRD eruptions are almost always coincident with mapped Quaternary faults. A shear‐velocity (Vs) model beneath the BRD indicates that the lithosphere has been thinned and that asthenospheric melt has coalesced at the lithosphere‐asthenosphere boundary, which is supported by the trace element compositions of BRD lavas that signify that they have incorporated continental lithospheric mantle. Our data and observations suggest that the asthenosphere‐lithosphere‐volcanic system in the BRD is inherently complex.  more » « less
Award ID(s):
1940305
PAR ID:
10647162
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
26
Issue:
10
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Basaltic lavas from Harrat Uwayrid, Saudi Arabia, record the evolving magmatic and tectonic context of the Arabian Peninsula from at least the mid‐Miocene to the present day. New40Ar/39Ar ages spanning from the mid to late Miocene reveal that mid‐Miocene mafic volcanism formed a large, subalkaline volcanic plateau parallel to Red Sea rifts. Subsequent volumetrically subordinate late Miocene‐Quaternary alkaline volcanism erupted monogenetic cinder cones roughly orthogonal to the earlier volcanic field. The source region for all samples was affected by both fluid and silicate metasomatism; inferred mantle mineral assemblages include amphibole for mid‐Miocene lavas and phlogopite for late Miocene‐Quaternary samples. Calculated melting depths become shallower with time across the Miocene volcanic episode (∼20–15 Ma) but become deeper in the late Miocene to Quaternary (∼10–0 Ma), indicating melting pressures and temperatures significantly higher than those recorded in Miocene lavas despite progressive lithospheric thinning. We offer a two‐stage model for the formation of Harrat Uwayrid: (a) Early‐ and mid‐Miocene rifting associated with the Red Sea opening facilitated adiabatic melting of uppermost mantle lithosphere to form the early volcanic plateau and (b) Plate motion changes in the mid‐ and late‐Miocene initiated the Dead Sea Fault and destabilized a dense pyroxenitic lower lithosphere leading to foundering or lithospheric drip beneath Harrat Uwayrid that allowed deep lithospheric melting and formed the young volatile‐rich eruptives. 
    more » « less
  2. Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common. 
    more » « less
  3. Abstract Isla Santa Cruz is a volcanic island located in the central Galápagos Archipelago. The island’s northern and southern flanks are deformed by E–W-trending normal faults not observed on the younger Galápagos shields, and Santa Cruz lacks the large summit calderas that characterize those structures. To construct a chronology of volcanism and deformation on Santa Cruz, we employ40Ar/39Ar geochronology of lavas and3He exposure dating of fault scarps from across the island. The combination of Ar–Ar dating with in situ-produced cosmogenic exposure age data provides a powerful tool to evaluate fault chronologies. The40Ar/39Ar ages indicate that the island has been volcanically active since at least 1.62 ± 0.030 Ma (2SD). Volcanism deposited lavas over the entire island until ~ 200 ka, when it became focused along an E–W-trending summit vent system; all dated lavas < 200 ka were emplaced on the southern flank. Structural observations suggest that the island has experienced two major faulting episodes. Crosscutting relationships of lavas indicate that north flank faults formed after 1.16 ± 0.070 Ma, but likely before 416 ± 36 ka, whereas the faults on the southern flank of the island initiated between 201 ± 37 and 32.6 ± 4.6 ka, based on3He exposure dating of fault surfaces. The data are consistent with a model wherein the northeastern faults are associated with regional extension owing to the young volcano’s location closer to the Galápagos Spreading Center at the time. The second phase of volcanism is contemporaneous with the formation of the southern faults. The expression of this younger, low-volume volcanic phase was likely related to the elongate island morphology established during earlier deformation. The complex feedback between tectonic and volcanic processes responsible for southward spreading along the southern flank likely generated persistent E-W-oriented magmatic intrusions. The formation of the Galápagos Transform Fault and sea-level fluctuations may be the primary causes of eruptive and deformational episodes on Santa Cruz. 
    more » « less
  4. Abstract The Colorado Plateau and its surroundings serve as an archetypal case to investigate the interaction of mantle melting processes and lithospheric structure. It has been hypothesized that widespread Cenozoic volcanism indicates the encroachment of the convective upwelling of asthenosphere toward the Plateau center. In this study, we generate a Common Conversion Point (CCP) stack of S‐to‐p (Sp) receiver functions to image the locations of lithospheric discontinuities in the southwestern United States. Our results are broadly similar to prior work, showing a strong and continuous Negative Velocity Gradient (NVG) consistent with the Lithosphere‐Asthenosphere Boundary (LAB) over much of the study area. However, with several methodological improvements, we are able to obtain more reliable NVG depth picks below the Colorado Plateau where the LAB becomes weaker, deeper, and broader. We compare the inferred topography of NVGs with the locations of volcanoes, and find that the majority of recent volcanoes are co‐located with lithosphere that is ∼80 km thick. This appears to be the critical depth at which partial melt from upwelling asthenosphere pooling at the base of (or within) the lithosphere may percolate to the surface. We compare our CCP profiles with magma equilibration conditions determined from petrologic analysis and find good agreement between the depth of NVGs and depth of magma equilibration. This analysis provides insight into the progression of magmatism and lithospheric loss toward the center of the Colorado Plateau, and demonstrates how small‐scale processes like melting influence lithosphere‐asthenosphere interactions that persist over large temporal and spatial scales. 
    more » « less
  5. Abstract Improvements in analytical procedures in parallel with intercalibration of40Ar/39Ar and U–Pb methods and laboratories, spurred since 2003 by the EarthTime geochronology community initiative, have led to ±2σuncertainties of the order of 50–100 ka, or better, for Cretaceous ash beds. Assembled here are 5740Ar/39Ar ages and 17238U–206Pb ages of volcanic ash beds in strata of the Western Interior Basin of North America determined during the last 15 years since these improvements have been made. These age determinations span from 108 Ma in the middle Albian to 66 Ma in the latest Maastrichtian. Five of the40Ar/39Ar ages from Campanian and Maastrichtian strata are newly reported here, whereas the remainder are from the literature. Building on the pioneering work of John Obradovich and Bill Cobban, where possible these age determinations are tied to ammonite and inoceramid biostratigraphy. For most ash beds, the temporal uncertainties, unlike earlier timescales for the Western Interior Basin, are much shorter than the duration of fossil biozones. Proposed ages for stage boundaries based on this review of the radioisotopic ages include: Maastrichtian–Danian, 66.02 ± 0.08 Ma; Campanian–Maastrichtian, 72.20 ± 0.20 Ma; Santonian–Campanian, 84.19 ± 0.38 Ma; Coniacian–Santonian, 86.49 ± 0.44 Ma; Turonian–Coniacian, 89.75 ± 0.38 Ma; Cenomanian–Turonian, 93.95 ± 0.05 Ma; Albian–Cenomanian, 100.00 ± 0.40 Ma. Six bentonites that occur within theVascoceras diartianum, Neocardiocerus juddi, Prionocylus macombi, Scaphites preventricosus, Scaphites depressusandDesmoscaphites bassleriammonite zones, dated using both40Ar/39Ar and U–Pb methods, yield ages in agreement to within 150 ka and form the backbone of the Western Interior Basin timescale. In parallel, improvements in the taxonomy of ammonites, inoceramids and foraminifera, and recent field work, are better establishing the biostratigraphic framework for these age determinations. Each of these efforts contributes to the progressive refinement of the chronostratigraphic framework of the Western Interior Basin, and enhances its utility for global correlation. 
    more » « less