skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Provincial-scale assessment of direct air capture to meet China’s climate neutrality goal under limited bioenergy supply
China has large, estimated potential for direct air carbon capture and storage (DACCS) but its deployment locations and impacts at the subnational scale remain unclear. This is largely because higher spatial resolution studies on carbon dioxide removal (CDR) in China have focused mainly on bioenergy with carbon capture and storage. This study uses a spatially detailed integrated energy-economy-climate model to evaluate DACCS for 31 provinces in China as the country pursues its goal of climate neutrality by 2060. We find that DACCS could expand China’s negative emissions capacity, particularly under sustainability-minded limits on bioenergy supply that are informed by bottom-up studies. But providing low-carbon electricity for multiple GtCO2yr−1DACCS may require over 600 GW of additional wind and solar capacity nationwide and comprise up to 30% of electricity demand in China’s northern provinces. Investment requirements for DACCS range from $330 to $530 billion by 2060 but could be repaid manyfold in the form of avoided mitigation costs, which DACCS deployment could reduce by up to $6 trillion over the same period. Enhanced efforts to lower residual CO2emissions that must be offset with CDR under a net-zero paradigm reduce but do not eliminate the use of DACCS for mitigation. For decision-makers and the energy-economy models guiding them, our results highlight the value of expanding beyond the current reliance on biomass for negative emissions in China.  more » « less
Award ID(s):
2215396
PAR ID:
10647342
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
11
ISSN:
1748-9326
Page Range / eLocation ID:
114021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To achieve net zero carbon emissions by mid-century, the United States may need to rely on carbon dioxide removal (CDR) to offset emissions from difficult-to-decarbonize sectors and/or shortfalls in near-term mitigation efforts. CDR can be delivered using many approaches with different requirements for land, water, geologic carbon storage capacity, energy, and other resources. The availability of these resources varies by region in the U.S. suggesting that CDR deployment will be uneven across the country. Using the global change analysis model for the United States (GCAM-USA), we modeled six classes of CDR and explored their potential using four scenarios: a scenario where all the CDR pathways are available (Full Portfolio), a scenario with restricted carbon capture and storage (Low CCS), a scenario where the availability of bio-based CDR options is limited (Low Bio), and a scenario with constraints on enhanced rock weathering (ERW) capabilities (Low ERW). We find that by employing a diverse set of CDR approaches, the U.S. could remove between 1 and 1.9 GtCO2/yr by midcentury. In the Full Portfolio scenario, direct air carbon capture and storage (DACCS) predominates, delivering approximately 50% of CO2removal, with bioenergy with carbon capture and storage contributing 25%, and ERW delivering 11.5%. Texas and the agricultural Midwest lead in CDR deployment due to their abundant agricultural land and geological storage availability. In the Low CCS scenario, reliance on DACCS decreases, easing pressure on energy systems but increasing pressure on the land. In all cases CDR deployment was found to drive important impacts on energy, land, or materials supply chains (to supply ERW, for example) and these effects were generally more pronounced when fewer CDR technologies were available. 
    more » « less
  2. Abstract Net-zero greenhouse gas emission targets are central to current international efforts to stabilize global climate, and many of these plans rely on carbon dioxide removal (CDR) to meet mid-century goals. CDR can be performed via nature-based approaches, such as afforestation, or engineered approaches, such as direct air capture. Both will have large impacts in the regions where they are sited. We used the Global Change Analysis Model for the United States to analyze how regional resources will influence and be influenced by CDR deployment in service of United States national net-zero targets. Our modeling suggests that CDR will be deployed extensively, but unevenly, across the country. A number of US states have the resources, such as geologic carbon storage capacity and agricultural land, needed to become net exporters of negative emissions. But this will require reallocation of resources, such as natural gas and electricity, and dramatically increase water and fertilizer use in many places. Modeling these kinds of regional or sub-national impacts associated with CDR, as intrinsically uncertain as it is at this time, is critical for understanding its true potential in meeting decarbonization commitments. 
    more » « less
  3. Abstract Understanding the costs and the spatial distribution of health and employment outcomes of low-carbon electricity pathways is critical to enable an equitable transition. We integrate an electricity system planning model (GridPath), a health impact model (InMAP), and a multiregional input–output model to quantify China’s provincial-level impacts of electricity system decarbonization on costs, health outcomes, employment, and labor compensation. We find that even without specific CO2constraints, declining renewable energy and storage costs enable a 26% decline in CO2emissions in 2040 compared to 2020 under the Reference scenario. Compared to the Reference scenario, pursuing 2 °C and 1.5 °C compatible carbon emission targets (85% and 99% decrease in 2040 CO2emissions relative to 2020 levels, respectively) reduces air pollution-related premature deaths from electricity generation over 2020–2040 by 51% and 63%, but substantially increases annual average costs per unit of electricity demand in 2040 (21% and 39%, respectively). While the 2 °C pathway leads to a 3% increase in electricity sector-related net labor compensation, the 1.5 °C pathway results in a 19% increase in labor compensation driven by greater renewable energy deployment. Although disparities in health impacts across provinces narrow as fossil fuels phase out, disparities in labor compensation widen with wealthier East Coast provinces gaining the most in labor compensation because of materials and equipment manufacturing, and offshore wind deployment. 
    more » « less
  4. ABSTRACT Carbon dioxide removal technologies such as bioenergy with carbon capture and storage (BECCS) are required if the effects of climate change are to be reversed over the next century. However, BECCS demands extensive land use change that may create positive or negative radiative forcing impacts upstream of the BECCS facility through changes to in situ greenhouse gas fluxes and land surface albedo. When quantifying these upstream climate impacts, even at a single site, different methods can give different estimates. Here we show how three common methods for estimating the net ecosystem carbon balance of bioenergy crops established on former grassland or former cropland can differ in their central estimates and uncertainty. We place these net ecosystem carbon balance forcings in the context of associated radiative forcings from changes to soil N2O and CH4fluxes, land surface albedo, embedded fossil fuel use, and geologically stored carbon. Results from long term eddy covariance measurements, a soil and plant carbon inventory, and the MEMS 2 process‐based ecosystem model all agree that establishing perennials such as switchgrass or mixed prairie on former cropland resulted in net negative radiative forcing (i.e., global cooling) of −26.5 to −39.6 fW m−2over 100 years. Establishing these perennials on former grassland sites had similar climate mitigation impacts of −19.3 to −42.5 fW m−2. However, the largest climate mitigation came from establishing corn for BECCS on former cropland or grassland, with radiative forcings from −38.4 to −50.5 fW m−2, due to its higher plant productivity and therefore more geologically stored carbon. Our results highlight the strengths and limitations of each method for quantifying the field scale climate impacts of BECCS and show that utilizing multiple methods can increase confidence in the final radiative forcing estimates. 
    more » « less
  5. China’s power system is highly regulated and uses an “equal-share” dispatch approach. However, market mechanisms are being introduced to reduce generation costs and improve system reliability. Here, we quantify the climate and human health impacts brought about by this transition, modeling China’s power system operations under economic dispatch. We find that significant reductions in mortality related to air pollution (11%) and CO2 emissions (3%) from the power sector can be attained by economic dispatch, relative to the equal-share approach, through more efficient coal-powered generation. Additional health and climate benefits can be achieved by incorporating emission externalities in electricity generation costs. However, the benefits of the transition to economic dispatch will be unevenly distributed across China and may lead to increased health damage in some regions. Our results show the potential of dispatch decision-making in electricity generation to mitigate the negative impacts of power plant emissions with existing facilities in China. 
    more » « less