skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Programmable material via thiol-ene polymerization initiated by electric-field induced thiyl radical on piezoelectric ZnO
Abstract The spatial and temporal control of material properties at a distance has yielded many unique innovations including photo-patterning, 3D-printing, and architected material design. To date, most of these innovations have relied on light, heat, sound, or electric current as stimuli for controlling the material properties. Here, we demonstrate that an electric field can induce chemical reactions and subsequent polymerization in composites via piezoelectrically-mediated transduction. The response to an electric field rather than through direct contact with an electrode is mediated by a nanoparticle transducer, i.e., piezoelectric ZnO, which mediates reactions between thiol and alkene monomers, resulting in tunable moduli as a function of voltage, time, and the frequency of the applied AC power. The reactivity of the mixture and the modulus of a naïve material containing these elements can be programmed based on the distribution of the electric field strength. This programmability results in multi-stiffness gels. Additionally, the system can be adjusted for the formation of an electro-adhesive. This simple and generalizable design opens avenues for facile application in adaptive damping and variable-rigidity materials, adhesive, soft robotics, and potentially tissue engineering.  more » « less
Award ID(s):
1710116
PAR ID:
10647460
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization. These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes. The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields. 
    more » « less
  2. null (Ed.)
    Abstract Composites can be tailored to specific applications by adjusting process variables. These variables include those related to composition, such as volume fraction of the constituents and those associated with processing methods, methods that can affect composite topology. In the case of particle matrix composites, orientation of the inclusions affects the resulting composite properties, particularly so in instances where the particles can be oriented and arranged into structures. In this work, we study the effects of coupled electric and magnetic field processing with externally applied fields on those structures, and consequently on the resulting material properties that arise. The ability to vary these processing conditions with the goal of generating microstructures that yield target material properties adds an additional level of control to the design of composite material properties. Moreover, while analytical models allow for the prediction of resulting composite properties from constituents and composite topology, these models do not build upward from process variables to make these predictions. This work couples simulation of the formation of microscale architectures, which result from coupled electric and magnetic field processing of particulate filled polymer matrix composites, with finite element analysis of those structures to provide a direct and explicit linkages between process, structure, and properties. This work demonstrates the utility of these method as a tool for determining composite properties from constituent and processing parameters. Initial particle dynamics simulation incorporating electromagnetic responses between particles and between the particles and the applied fields, including dielectrophoresis, are used to stochastically generate representative volume elements for a given set of process variables. Next, these RVEs are analyzed as periodic structures using FEA yielding bulk material properties. The results are shown to converge for simulation size and discretization, validating the RVE as an appropriate representation of the composite volume. Calculated material properties are compared to traditional effective medium theory models. Simulations allow for mapping of composite properties with respect to not only composition, but also fundamentally from processing simulations that yield varying particle configurations, a step not present in traditional or more modern effective medium theories such as the Halpin Tsai or double-inclusion theories. 
    more » « less
  3. Abstract Electro‐optic sampling has emerged as a new quantum technique enabling measurements of electric field fluctuations on subcycle time scales. In a second‐order nonlinear material, the fluctuations of a terahertz field are imprinted onto the polarization properties of an ultrashort probe pulse in the near infrared. The statistics of this time‐domain signal are calculated, incorporating the quantum nature of the involved electric fields right from the beginning. A microscopic quantum theory of the electro‐optic process is developed adopting an ensemble of noninteracting three‐level systems as a model for the nonlinear material. It is found that the response of the nonlinear medium can be separated into a conventional part, which is exploited also in sampling of coherent amplitudes, and quantum contributions, which are independent of the state of the terahertz input. Interactions between the three‐level systems which are mediated by terahertz vacuum fluctuations are causing this quantum response. Conditions under which the classical response serves as a good approximation of the electro‐optic process are also determined and how the statistics of the sampled terahertz field can be reconstructed from the electro‐optic signal is demonstrated. In a complementary regime, electro‐optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of matter. 
    more » « less
  4. null (Ed.)
    This paper presents a novel physical gripping framework intended for controlled, high force density attachment on a range of surfaces. Our framework utilizes a light-activated chemical adhesive to attach to surfaces. The cured adhesive is part of a "sacrificial layer," which is shed when the gripper separates from the surface. In order to control adhesive behavior we utilize ultraviolet (UV) light sensitive acrylics which are capable of rapid curing when activated with 380nm light. Once cured, zero input power is needed to hold load. Thin plastic parts can be used as the sacrificial layers, and these can be released using an electric motor. This new gripping framework including the curing load capacity, adhesive deposition, and sacrificial methods are described in detail. Two proof-of concept prototypes are designed, built, and tested. The experimental results illustrate the response time (15-75s depending on load), high holding force-to-weight ratio (10-30), and robustness to material type. Additionally, two drawbacks of this design are discussed: corruption of the gripped surface and a limited number of layers. 
    more » « less
  5. Abstract The field of polymer mechanochemistry has been revolutionized by implementing force-responsive functional groups—mechanophores. The rational design of mechanophores enables the controlled use of force to achieve constructive molecular reactivity and material responses. While a variety of mechanophores have been developed, this Mini Review focuses on cyclobutane, which has brought valuable insights into molecular reactivity and dynamics as well as innovations in materials. We discuss its reactivity and mechanism, dynamics and stereoselectivity, as well as impacts on material properties. 
    more » « less