skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 8, 2026

Title: Residual Gas Analysis for Controlling the Phosphorus Incorporation in Diamond
Various reports on phosphorus‐doped diamond growth present a prominent variation in the doping profile and the doping gradient at the substrate/epilayer interface. This warrants a closer investigation of the growth process, in particular, the gas chemistry via residual gas analysis (RGA) to determine whether a doping indicator exists that would allow a real‐time control of the phosphorus incorporation. Phosphorus‐doped diamond films are prepared by plasma‐enhanced chemical vapor deposition utilizing a 200 ppm trimethylphosphine in hydrogen gas mixture. The phosphorus‐doped diamond growth is characterized by in situ RGA, which identifies a diatomic radical (PH) formed in the hydrogen plasma. A rapid analysis response is achieved through an engineered differentially pumped component. Secondary ion mass spectroscopy (SIMS) is employed to evaluate the phosphorus incorporation in the doped diamond epilayers. The SIMS‐derived phosphorus doping profile is correlated to the RGA‐measured PH concentration. For an epilayer grown on a (111) chemical vapor deposition‐type IIa substrate with moderate miscut a significant phosphorus incorporation of 4.5 × 1019 cm−3is measured with an incorporation efficiency of about 10%. A doping model is derived that utilizes RGA for dominant growth and doping species and under consideration of various growth modes.  more » « less
Award ID(s):
2003567
PAR ID:
10647570
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
physica status solidi (a)
ISSN:
1862-6300
Subject(s) / Keyword(s):
diamonds, phosphorus doping, plasma-enhanced chemical vapor deposition, residual gas analyses, secondary ion mass spectroscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties. 
    more » « less
  2. Cubic boron nitride (c-BN), with a small 1.4% lattice mismatch with diamond, presents a heterostructure with multiple opportunities for electronic device applications. However, the formation of c-BN/diamond heterostructures has been limited by the tendency to form hexagonal BN at the interface. In this study, c-BN has been deposited on free standing polycrystalline and single crystal boron-doped diamond substrates via electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD), employing fluorine chemistry. In situ x-ray photoelectron spectroscopy (XPS) is used to characterize the nucleation and growth of boron nitride (BN) films as a function of hydrogen gas flow rates during deposition. The PECVD growth rate of BN was found to increase with increased hydrogen gas flow. In the absence of hydrogen gas flow, the BN layer was reduced in thickness or etched. The XPS results show that an excess of hydrogen gas significantly increases the percent of sp2 bonding, characteristic of hexagonal BN (h-BN), particularly during initial layer growth. Reducing the hydrogen flow, such that hydrogen gas is the limiting reactant, minimizes the sp2 bonding during the nucleation of BN. TEM results indicate the partial coverage of the diamond with thin epitaxial islands of c-BN. The limited hydrogen reaction is found to be a favorable growth environment for c-BN on boron-doped diamond. 
    more » « less
  3. In this Letter, the role of background carbon in metalorganic chemical vapor deposition (MOCVD) β-Ga2O3 growth using trimethylgallium (TMGa) as the Ga precursor was investigated. The quantitative C and H incorporations in MOCVD β-Ga2O3 thin films grown at different growth rates and temperatures were measured via quantitative secondary ion mass spectroscopy (SIMS). The SIMS results revealed both [C] and [H] increase as the TMGa molar flow rate/growth rate increases or growth temperature decreases. The intentional Si incorporation in MOCVD β-Ga2O3 thin films decreases as the growth rate increases or the growth temperature decreases. For films grown at relatively fast growth rates (GRs) (TMGa > 58 μmol/min, GR > 2.8 μm/h) or relatively low temperature (<950 °C), the [C] increases faster than that of the [H]. The experimental results from this study demonstrate the previously predicted theory—H can effectively passivate the compensation effect of C in n-type β-Ga2O3. The extracted net doping concentration from quantitative SIMS {[Si]-([C]-[H])} agrees well with the free carrier concentration measured from Hall measurement. The revealing of the role of C compensation in MOCVD β-Ga2O3 and the effect of H incorporation will provide guidance on designing material synthesis for targeted device applications. 
    more » « less
  4. Epitaxial films of cubic boron nitride (c-BN) have been grown on single-crystal boron-doped diamond substrates by electron cyclotron resonance plasma-enhanced chemical vapor deposition using gas mixtures of Ar–He–N2–BF3–H2. The resulting c-BN films have been characterized using in situ x-ray photoelectron spectroscopy to establish the growth surface bonding (i.e., sp3 or sp2). The interface and film crystal structure were characterized with high resolution electron microscopy and electron-energy-loss spectroscopy. This study considers three stages of the growth process: in situ surface preparation, initial nucleation and growth of c-BN, and growth of the epitaxial c-BN layer. Prior studies from our group have established that hydrogen gas phase concentration affects fluorine-induced etching and c-BN nucleation. The results of this study establish that by optimizing the surface chemistry for all three stages of the growth process, it is possible to achieve an adherent, oriented epitaxial c-BN layer, a workable growth rate (∼50 nm/hr), cubic phase BN throughout, and negligible sp2 bonding except at the interface. 
    more » « less
  5. We report on the growth of Si-doped homoepitaxial β-Ga2O3 thin films on (010) Ga2O3 substrates via metal-organic chemical vapor deposition (MOCVD) utilizing triethylgallium (TEGa) and trimethylgallium (TMGa) precursors. The epitaxial growth achieved an impressive 9.5 μm thickness at 3 μm/h using TMGa, a significant advance in material growth for electronic device fabrication. This paper systematically studies the Schottky barrier diodes fabricated on the three MOCVD-grown films, each exhibiting variations in the epilayer thickness, doping levels, and growth rates. The diode from the 2 μm thick Ga2O3 epilayer with TEGa precursor demonstrates promising forward current densities, the lowest specific on-resistance, and the lowest ideality factor, endorsing TEGa’s potential for MOCVD growth. Conversely, the diode from the 9.5 μm thick Ga2O3 layer with TMGa precursor exhibits excellent characteristics in terms of lowest leakage current, highest on-off ratio, and highest reverse breakdown voltage of −510 V without any electric field management, emphasizing TMGa’s suitability for achieving high growth rates in Ga2O3 epilayers for vertical power electronic devices. 
    more » « less