skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Present and Future of Everyday-Use Augmented Reality Eyeglasses
Augmented reality (AR) is emerging as the next ubiquitous wearable technology and is expected to significantly transform various industries in the near future. There has been tremendous investment in developing AR eyeglasses in recent years, including about $45 billion investment by Meta since 2021. Despite such efforts, the existing displays are very bulky in form factor and there has not yet been a socially acceptable eyeglasses-style AR display. Such wearable display eyeglasses promise to unlock enormous potential in diverse applications such as medicine, education, navigation, and many more; but until eyeglass-style AR glasses are realized, those possibilities remain only a dream. My research addresses this problem and makes progress “towards everyday-use augmented reality eyeglasses” through computational imaging, displays, and perception. My dissertation (Chakravarthula, 2021) made advances in three key and seemingly distinct areas: first, digital holography and advanced algorithms for compact, high-quality, true 3-D holographic displays; second, hardware and software for robust and comprehensive 3-D eye tracking via Purkinje Images; and third, automatic focus adjusting AR display eyeglasses for well-focused virtual and real imagery, toward potentially achieving 20/20 vision for users of all ages.Not Available  more » « less
Award ID(s):
2107454
PAR ID:
10647881
Author(s) / Creator(s):
 
Publisher / Repository:
IEEE Computer Graphics and Applications
Date Published:
Journal Name:
IEEE Computer Graphics and Applications
Volume:
45
Issue:
1
ISSN:
0272-1716
Page Range / eLocation ID:
56 to 66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The aim of this work is to examine how augmented reality (AR) head worn displays (HWDs) influence worker task performance in comparison to traditional paper blueprints when assembling three various sized wooden frame walls. In our study, 18 participants assembled three different sized frames using one of the three display conditions (conformal AR interface, tag-along AR interface, and paper blueprints). Results indicate that for large frame assembly, the conformal AR interface reduced assembly errors, yet there were no differences in assembly times between display conditions. Additionally, traditional paper blueprints resulted in significantly faster assembly time for small frame assembly. 
    more » « less
  2. Augmented reality (AR) devices seek to create compelling visual experiences that merge virtual imagery with the natural world. These devices often rely on wearable near-eye display systems that can optically overlay digital images to the left and right eyes of the user separately. Ideally, the two eyes should be shown images with minimal radiometric differences (e.g., the same overall luminance, contrast, and color in both eyes), but achieving this binocular equality can be challenging in wearable systems with stringent demands on weight and size. Basic vision research has shown that a spectrum of potentially detrimental perceptual effects can be elicited by imagery with radiometric differences between the eyes, but it is not clear whether and how these findings apply to the experience of modern AR devices. In this work, we first develop a testing paradigm for assessing multiple aspects of visual appearance at once, and characterize five key perceptual factors when participants viewed stimuli with interocular contrast differences. In a second experiment, we simulate optical see-through AR imagery using conventional desktop LCD monitors and use the same paradigm to evaluate the multi-faceted perceptual implications when the AR display luminance differs between the two eyes. We also include simulations of monocular AR systems (i.e., systems in which only one eye sees the displayed image). Our results suggest that interocular contrast differences can drive several potentially detrimental perceptual effects in binocular AR systems, such as binocular luster, rivalry, and spurious depth differences. In addition, monocular AR displays tend to have more artifacts than binocular displays with a large contrast difference in the two eyes. A better understanding of the range and likelihood of these perceptual phenomena can help inform design choices that support high-quality user experiences in AR. 
    more » « less
  3. Three-dimensional (3D) vision in augmented reality (AR) displays can enable highly immersive and realistic viewer experience, hence, attracts much attention. Most current approaches create 3D vision by projecting stereoscopic images to different eyes using two separate projection systems, which are inevitably bulky for wearable devices. Here, we propose a compact stereo waveguide AR display system using a single piece of thin flat glass integrated with a polarization-multiplexed metagrating in-coupler and two diffractive grating out-couplers. Incident light of opposite circular polarization states carrying stereoscopic images are first steered by the metagrating in-coupler to opposite propagation directions in the flat glass waveguide, subsequently extracted by the diffractive grating out-couplers, and finally received by different eyes, forming 3D stereo vision. Experimentally, we fabricated a display prototype and demonstrated independent projection of two polarization-multiplexed stereoscopic images. 
    more » « less
  4. As the automotive industry progresses towards the car of the future, we have seen increasing interest using augmented reality (AR) head-up displays (HUD) in driving. AR HUDs provide a fundamentally new driving experience in which drivers still have to respond to both the road and the information provided by the system, creating the perfect atmosphere for potentially unsafe and distracting interfaces. As we start fielding and designing for new AR HUDs displays, the complexities of interface design and its impacts on driver performance must be further understood before AR HUDs can be broadly and safely incorporated into vehicles. Nevertheless, existing methods for assessing the usefulness of computer-based user interfaces may not be sufficiently rich to measure the overall impact of AR HUD interfaces on human performance. Therefore, in my Ph.D. research, I focus on developing and testing methods to evaluate AR HUDs' effects on driver distraction and performance. My primary goal is to assess glance allocation and visual capabilities of drivers with AR HUDs and apply this knowledge to inform new methods of AR HUD assessment that account for inattentional blindness and cognitive tunneling. 
    more » « less
  5. Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment. 
    more » « less