skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Quantifying the Impact of Groundwater on Ice Formation in the Great Lakes
Abstract Winter ice conditions in the Great Lakes play a crucial role in shaping ecological processes, shoreline dynamics, and regional weather patterns. Although atmospheric factors are widely acknowledged as the primary drivers of ice formation and duration, the influence of subsurface groundwater flow remains largely unexplored. In this study, we evaluate how spatially and temporally variable groundwater flux affects ice formation and thermal structure in Lakes Michigan and Huron, using a coupled hydrodynamic‐ice model. Simulations were conducted for the winters of 2014, 2015, and 2016—a period characterized by distinct atmospheric and ice conditions—and were validated against observed ice concentration maps and temperature profiles. Results show that groundwater enhances ice thickness during colder winters by strengthening water column stability, limiting vertical mixing, and insulating the surface layer, thus promoting thicker, longer‐lasting ice. Sensitivity analyses reveal that moderate increases in groundwater flux intensify stratification and prolong ice concentration, while an extreme, high flux (1000x) disrupts stability and reduces ice thickness. Coastal regions display more pronounced effects due to higher groundwater input, whereas offshore zones exhibit comparatively weaker responses. These findings highlight the significant role of groundwater flux in modulating ice dynamics and stratification in large freshwater systems such as the Great Lakes. This research underscores the importance of incorporating subsurface hydrology into coupled modeling frameworks to improve predictions of ice dynamics and water column stratification. Future work should focus on obtaining high‐resolution observational data on groundwater flux and ice thickness, particularly near shorelines, to further refine coupled hydrodynamic‐ice models.  more » « less
Award ID(s):
2330317
PAR ID:
10648169
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
AGU Advancing Earth and Space Sciences
Date Published:
Journal Name:
Water Resources Research
Volume:
61
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lakes are experiencing ice declines and fundamental changes in winter conditions. For Earth's largest lakes that experience seasonal ice cover, the relationship between ice conditions and evaporation is critical to water balance estimates and global freshwater storage. Here, we analyze robust data sets of net basin supplies, satellite‐derived products, and model estimates of surface turbulent heat flux for the Laurentian Great Lakes during the period 1973–2022. We show that ice cover does not have a strong relationship with lake evaporation in winter months and that often the magnitude of the ice effect on moisture flux reduction is within the range of natural variability and the uncertainty of water budget estimates. This suggests that differences in lake evaporation between cold and warm winters is driven by seasonal overlake atmospheric conditions, more broadly, and that ice cover reduces but does not determine the resultant evaporation. 
    more » « less
  2. Abstract Climate model projections suggest a substantial decrease of sea ice export into the outflow areas of the Arctic Ocean over the 21st century. Fram Strait, located in the Greenland Sea sector, is the principal gateway for ice export from the Arctic Ocean. The consequences of lower sea ice flux through Fram Strait on ocean dynamics and primary production in the Greenland Sea remain unknown. By using the most recent 16 years (2003–2018) of satellite imagery available and hydrographic in situ observations, the role of exported Arctic sea ice on water column stratification and phytoplankton production in the Greenland Sea is evaluated. Years with high Arctic sea ice flux through Fram Strait resulted in high sea ice concentration in the Greenland Sea, stronger water column stratification, and an earlier spring phytoplankton bloom associated with high primary production levels. Similarly, years with low Fram Strait ice flux were associated with a weak water column stratification and a delayed phytoplankton spring bloom. This work emphasizes that sea ice and phytoplankton production in subarctic “outflow seas” can be strongly influenced by changes occurring in the Arctic Ocean. 
    more » « less
  3. Abstract. The Laurentian Great Lakes significantly influence the climate of the Midwest and Northeast United States due to their vast thermal inertia, moisture source potential, and complex heat and moisture flux dynamics. This study presents a newly developed coupled lake–ice–atmosphere (CLIAv1) modeling system for the Great Lakes by coupling the National Aeronautics and Space Administration (NASA) Unified Weather Research and Forecasting (NU-WRF) regional climate model (RCM) with the three-dimensional (3D) Finite Volume Community Ocean Model (FVCOM) and investigates the impact of coupled dynamics on simulations of the Great Lakes' winter climate. By integrating 3D lake hydrodynamics, CLIAv1 demonstrates superior performance in reproducing observed lake surface temperatures (LSTs), ice cover distribution, and the vertical thermal structure of the Great Lakes compared to the NU-WRF model coupled with the default 1D Lake Ice Snow and Sediment Simulator (LISSS). CLIAv1 also enhances the simulation of over-lake atmospheric conditions, including air temperature, wind speed, and sensible and latent heat fluxes, underscoring the importance of resolving complex lake dynamics for reliable regional Earth system projections. More importantly, the key contribution of this study is the identification of critical physical processes that influence lake thermal structure and ice cover – processes that are missed by 1D lake models but effectively resolved by 3D lake models. Through process-oriented numerical experiments, we identify key 3D hydrodynamic processes – ice transport, heat advection, and shear production in turbulence – that explain the superiority of 3D lake models to 1D lake models, particularly in cold season performance and lake–atmosphere interactions. Critically, all three of these processes are dynamically linked to water currents – spatially and temporally evolving flow fields that are structurally absent in 1D models. This study aims to advance our understanding of the physical mechanisms that underlie the fundamental differences between 3D and 1D lake models in simulating key hydrodynamic processes during the winter season, and it offers generalized insights that are not constrained by specific model configurations. 
    more » « less
  4. null (Ed.)
    Lakes and reservoirs contribute to regional carbon budgets via significant emissions of climate forcing trace gases. Here, for improved modelling, we use 8 years of floating chamber measurements from three small, shallow subarctic lakes (2010–2017, n = 1306) to separate the contribution of physical and biogeochemical processes to the turbulence-driven, diffusion-limited flux of methane (CH4) on daily to multi-year timescales. Correlative data include 9 years of surface water concentration measurements (2009–2017, n = 606), total water column storage (2009–2017, n = 1593) and in situ meteorological observations. We used the latter to compute near surface turbulence based on similarity scaling and then applied the surface renewal model to compute gas transfer velocities. Chamber fluxes averaged 6.9 ± 0.3 mg CH4 m−2 d−1 and gas transfer velocities (k600) averaged 4.0 ± 0.1 cm h−1. Chamber derived gas transfer velocities tracked the power-law wind speed relation of the model. Coefficients for the model and dissipation rates depended on shear production of turbulence, atmospheric stability, and exposure to wind. Fluxes increased with wind speed until daily average values exceeded 6.5 m s−1, at which point emissions were suppressed due to rapid water column degassing reducing the water–air concentration gradient. Arrhenius-type temperature functions of the CH4 flux (Ea‘ = 0.90 ± 0.14 eV) were robust (R2 ≥ 0.93, p < 0.01) and also applied to the surface CH4 concentration (Ea‘ = 0.88 ± 0.09 eV). These results imply that emissions were strongly coupled to production and supply to the water column. Spectral analysis indicated that on timescales shorter than a month, emissions were driven by wind shear whereas on longer timescales variations in water temperature governed the flux. Long-term monitoring efforts are essential to identify distinct functional relations that govern flux variability on timescales of weather and climate change. 
    more » « less
  5. Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability. 
    more » « less