The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-m spatial resolution and hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of extreme heat events.
more »
« less
2m processed sensible and latent heat flux, friction velocity and stability at EastGRIP site on Greenland Ice Sheet, summer 2019
Processed 30 minute surface sensible and latent heat flux including quality control flags after Foken et al. (2012). The latent heat flux was calculated assuming a latent heat of sublimation of 2834 J/g snow. Friction velocity and Monin-Obukhov stability parameter estimates are provided for convenience. Processing software was EASYFLUX DL provided by Campbell Scientific.The timestamps indicate the beginning of the 30 minute averaging period . The IRGASON was installed at 2.15m facing the prevailing wind direction.
more »
« less
- Award ID(s):
- 1804098
- PAR ID:
- 10648172
- Publisher / Repository:
- PANGAEA
- Date Published:
- Subject(s) / Keyword(s):
- DATE/TIME Heat, flux, sensible Quality flag Heat, flux, latent Friction velocity Monin-Obukhov stability Weather station/meteorological observation Eddy-Covariance Analyzer, Campbell Scientific, Inc., IRGASON [combined infrared gas analyzer (IRGA) and 3D sonic (SON) anemometer] East Greenland Ice-core Project (EGRIP) Signals from the Surface Snow: Post-Depositional Processes Controlling the Ice Core Isotopic Fingerprint (SNOWISO)
- Format(s):
- Medium: X Size: 18969 data points Other: text/tab-separated-values
- Size(s):
- 18969 data points
- Location:
- https://doi.org/10.1594/PANGAEA.928827
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The objective of this study was to upscale airborne flux measurements ofsensible heat and latent heat and to develop high-resolution flux maps. Inorder to support the evaluation of coupled atmospheric–land-surface models weinvestigated spatial patterns of energy fluxes in relation to land-surfaceproperties. We used airborne eddy-covariance measurements acquired by the Polar 5research aircraft in June–July 2012 to analyze surface fluxes.Footprint-weighted surface properties were then related to 21 529 sensibleheat flux observations and 25 608 latent heat flux observations using bothremote sensing and modeled data. A boosted regression tree technique wasused to estimate environmental response functions between spatially andtemporally resolved flux observations and corresponding biophysical andmeteorological drivers. In order to improve the spatial coverage and spatialrepresentativeness of energy fluxes we used relationships extracted acrossheterogeneous Arctic landscapes to infer high-resolution surface energy fluxmaps, thus directly upscaling the observational data. These maps of projectedsensible heat and latent heat fluxes were used to assess energy partitioningin northern ecosystems and to determine the dominant energy exchangeprocesses in permafrost areas. This allowed us to estimate energy fluxes forspecific types of land cover, taking into account meteorological conditions.Airborne and modeled fluxes were then compared with measurements from aneddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependentquantification of surface energy fluxes and they provide new insights into theprocesses affecting these fluxes for the main vegetation types inhigh-latitude permafrost areas.more » « less
-
A previous study demonstrated that atmospheric rivers (ARs) generate substantial air-sea fluxes in the northeast Pacific. Since the southeast Indian Ocean is one of the active regions of ARs, similar air-sea fluxes could be produced. However, the spatial pattern of sea surface temperature (SST) in the southeast Indian Ocean, especially along the west coast of Australia, is different from that in the northeast Pacific because of the poleward flowing Leeuwin Current, which may cause different air-sea fluxes. This study investigates AR-associated air-sea fluxes in the southeast Indian Ocean and their relation with SST variability. The large-scale spatial pattern of latent heat flux (evaporation) associated with ARs in the southeast Indian Ocean is similar to that in the northeast Pacific. A significant difference is however found near the coastal area where relatively warm SSTs are maintained in all seasons. While AR-induced latent heat flux is close to zero around the west coast of North America where the equatorward flowing coastal current and upwelling generate relatively cold SSTs, a significant latent heat flux induced by ARs is evident along the west coast of Australia due to the relatively warm surface waters. Temporal variations of coastal air-sea fluxes associated with landfalling ARs are investigated based on the composite analysis. While the moisture advection reduces the latent heat during landfalling, the reduction of air humidity with strong winds enhances large evaporative cooling (latent heat flux) after a few days of the landfalling. A significant SST cooling along the coast is found due to the enhanced latent heat flux.more » « less
-
Abstract The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.more » « less
-
Abstract In the marine boundary layer, the exchange of momentum, heat, and moisture occurs between the atmosphere and ocean. Since it is too dangerous for a crewed aircraft to fly close to the ocean surface to directly obtain these measurements, a sUAS (small Uncrewed Aircraft System) is one of the only viable options. On 24 March 2023 a Black Swift Technologies S0 sUAS was deployed from the NOAA P‐3 on a calm clear day off the west coast of Florida. For 23 min at the end of the mission, the sUAS flew 8 straight line legs with an average length of 2.15 km, at roughly 10 m above the ocean surface, with wind speeds between 3.0 and 4.5 m s−1. For the first time over the open ocean using a sUAS, the 4‐Hz wind and thermodynamic data was used to calculate surface momentum flux, sensible heat flux, and latent flux using both direct covariance methods and the bulk aerodynamic formulas. Since all the flux quantities can be found using both direct and indirect methods, we are able to calculate the exchange coefficients of momentum flux (CD), latent heat flux (CE), and sensible heat flux (CH) with results that are generally in good agreement with previous studies over the same wind speed range. This study demonstrates the ability of sUAS to measure air‐sea interactions. Future intention is to use sUAS to obtain similar measurements in high wind events such as hurricanes which could better help understand hurricane intensification and improve model physics.more » « less
An official website of the United States government
