skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: Dynamic Motion of Microwave Bursts during a Solar Limb Flare
Abstract The SOL2013-10-28T02:02:58L133C110 flare occurred on the western limb, acquiring the GOES class of X1.0, and we focus on an oscillatory phenomenon detected at 34 GHz by the Nobeyama Radioheliograph (NoRH) during this flare. The oscillation is less obvious at 17 GHz and is unseen for a hard X-ray source detected by the RHESSI. In the 94 Å images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we traced the evolution of the extreme ultraviolet (EUV) images capturing an eruption around 01:58 UT over the location of the RHESSI 50–100 keV source. We located the microwave emitting loop inferred from the 17/34 GHz maps within the complex EUV loop systems, and performed a model calculation of the dynamic evolution of the microwave brightness, including the radiative transfer in a magnetically asymmetric loop and evolving nonthermal electrons. The results demonstrate that a quasiperiodic injection of energetic electrons at a fixed spatial point is sufficient to reproduce such an oscillatory motion, without an actual shift of the nonthermal electron injection point, and that the magnetic environment required for the microwave loop model is consistent with the observed EUV activities related to the overall reconnection geometry.  more » « less
Award ID(s):
2114201
PAR ID:
10648206
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in Hαby the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hαand EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photospheric magnetogram. We conclude that the microwave counterpart of the erupting filament is likely due to flare-accelerated electrons injected into the filament-hosting magnetic flux rope cavity following the newly reconnected magnetic field lines. 
    more » « less
  2. Abstract We investigate the eruptive process of two filaments, which is associated with an M-class flare that occurred in 2011 August 4. The filaments are partly overlapped, one in the active region and the other just beside it, and erupt together as a halo coronal mass ejection. For this study, we used the Atmospheric Imaging Assembly and the Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, the Nobeyama Radioheliograph 17 GHz, and the RHESSI Hard X-ray satellite. We found three distinct phases in the microwave flux profile and in the rising pattern of the filaments during the event. In the first phase, there was weak nonthermal emission at 17 GHz and hard X-rays. Those nonthermal sources appeared on one edge of the western filament (F2) in the active region. The F2 began to be bright and rose upward rapidly, while the eastern filament (F1), which was extended to the quiet region, started to brighten from the peak time of the 17 GHz flux. In the second phase, the nonthermal emission weakened and the F2 rose up slowly, while the F1 began to rise up. In the third phase, two filaments erupted together. Since the F1 was stable for a long time in the quiet region, breaking the equilibrium state of the F1 would be decisive for the successful eruption of two filaments and it seems clear that the evolution of the F2 provoked the unstable F1. We suggest that tether-cutting reconnection between two overlapped filaments triggers the eruption of the two filaments as a tangled identity. 
    more » « less
  3. Abstract Extreme-ultraviolet late phase (ELP) refers to the second extreme-ultraviolet (EUV) radiation enhancement observed in certain solar flares, which usually occurs tens of minutes to several hours after the peak of soft X-ray emission. The coronal loop system that hosts the ELP emission is often different from the main flaring arcade, and the enhanced EUV emission therein may imply an additional heating process. However, the origin of the ELP remains rather unclear. Here we present the analysis of a C1.4 flare that features such an ELP, which is also observed in microwave wavelengths by the Expanded Owens Valley Solar Array. Similar to the case of the ELP, we find a gradual microwave enhancement that occurs about 3 minutes after the main impulsive phase microwave peaks. Radio sources coincide with both foot points of the ELP loops and spectral fits on the time-varying microwave spectra demonstrate a clear deviation of the electron distribution from the Maxwellian case, which could result from injected nonthermal electrons or nonuniform heating to the footpoint plasma. We further point out that the delayed microwave enhancement suggests the presence of an additional heating process, which could be responsible for the evaporation of heated plasma that fills the ELP loops, producing the prolonged ELP emission. 
    more » « less
  4. Aims. We aim to constrain the acceleration, injection, and transport processes of flare-accelerated energetic electrons by comparing their characteristics at the Sun with those injected into interplanetary space. Methods. We have identified 17 energetic electron events well-observed with the SEPT instrument aboard STEREO which show a clear association with a hard X-ray (HXR) flare observed with the RHESSI spacecraft. We compare the spectral indices of the RHESSI HXR spectra with those of the interplanetary electrons. Because of the frequent double-power-law shape of the in situ electron spectra, we paid special attention to the choice of the spectral index used for comparison. Results. The time difference between the electron onsets and the associated type III and microwave bursts suggests that the electron events are detected at 1 AU with apparent delays ranging from 9 to 41 min. While the parent solar activity is clearly impulsive, also showing a high correlation with extreme ultraviolet jets, most of the studied events occur in temporal coincidence with coronal mass ejections (CMEs). In spite of the observed onset delays and presence of CMEs in the low corona, we find a significant correlation of about 0.8 between the spectral indices of the HXR flare and the in situ electrons. The correlations increase if only events with significant anisotropy are considered. This suggests that transport effects can alter the injected spectra leading to a strongly reduced imprint of the flare acceleration. Conclusions. We conclude that interplanetary transport effects must be taken into account when inferring the initial acceleration of solar energetic electron events. Although our results suggest a clear imprint of flare acceleration for the analyzed event sample, a secondary acceleration might be present which could account for the observed delays. However, the limited and variable pitch-angle coverage of SEPT could also be the reason for the observed delays. 
    more » « less
  5. Abstract We report for the first time the detection of thermal free–free emission from post-flare loops at 34 GHz in images from the Nobeyama Radioheliograph. We studied eight loops, seven of which were from regions with an extremely strong coronal magnetic field reported by Fedenev et al. Loop emission was observed in a wide range of wavelength bands, up to soft X-rays, confirming their multitemperature structure and was associated with noise storm emission in metricλ. The comparison of the 17 GHz emission with that at 34 GHz, after a calibration correction of the latter, showed that the emission was optically thin at both frequencies. We describe the structure and evolution of the loops and we computed their density, obtaining values for the top of the loops between 1 and 6 × 1010cm−3, noticeably varying from one loop to another and in the course of the evolution of the same loop system; these values have only a weak dependence on the assumed temperature, 2 × 106K in our case, as we are in the optically thin regime. Our density values are above those reported from EUV observations, which go up to about 1010cm−3. This difference could be due to the fact that different emitting regions are sampled in the two domains and/or due to the more accurate diagnostics in the radio range, which do not suffer from inherent uncertainties arising from abundances and non-LTE excitation/ionization equilibria. We also estimated the magnetic field in the loop tops to be in the range of 10–30 G. 
    more » « less