The realization of single-molecule thermal conductance measurements has driven the need for theoretical tools to describe conduction processes that occur over atomistic length scales. In macroscale systems, the principle that is typically used to understand thermal conductivity is Fourier’s law. At molecular length scales, however, deviations from Fourier’s law are common in part because microscale thermal transport properties typically depend on the complex interplay between multiple heat conduction mechanisms. Here, the thermal transport properties that arise from electron transfer across a thermal gradient in a molecular conduction junction are examined theoretically. We illustrate how transport in a model junction is affected by varying the electronic structure and length of the molecular bridge in the junction as well as the strength of the coupling between the bridge and its surrounding environment. Three findings are of note: First, the transport properties can vary significantly depending on the characteristics of the molecular bridge and its environment; second, the system’s thermal conductance commonly deviates from Fourier’s law; and third, in properly engineered systems, the magnitude of electron hopping thermal conductance is similar to what has been measured in single-molecule devices.
more »
« less
This content will become publicly available on September 14, 2026
Chiral-induced circularly polarized light emission from a single-molecule junction
In the present work we theoretically analyze electroluminescence occurring in a biased single-molecule junction with a chiral bridge imitated by a helical chain. We show that optical transitions between electron states of the chiral linker may result in the emission of circular polarized light whose handedness depends on both direction of propagation and the polarity of the bias voltage provided that the coupling between the bridge sites is sufficiently strong. The mechanism controlling this specific light emission does not depend on the magnetic moments and spin–orbit interactions. It rather relies on the chiral properties of the bridge molecule and on the distribution of the bias voltage between the electrodes in the junction.
more »
« less
- Award ID(s):
- 2122102
- PAR ID:
- 10648260
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Physica B: Condensed Matter
- Volume:
- 77
- Issue:
- 15
- ISSN:
- 1873-2135
- Page Range / eLocation ID:
- 417786
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers.more » « less
-
Molecular orbital symmetry plays a pivotal role in determining chemical reaction mechanisms. The process of changing chemical reactants into products must transition along a pathway that conserves molecular orbital symmetry to ensure continuity. This principle is so fundamental that reactions that do not conserve symmetry are typically considered “forbidden” due to the high resultant energy barriers. Here, it is demonstrated that it is possible to electrically catalyze these forbidden transitions when a single molecule is bound between two electrodes in a nanoscale junction. A cycloaddition reaction is induced in a norbornadiene (NBD) derivative, converting it to quadricyclane (QC) by utilizing nanoconfinement to place the molecule into a configuration that is far from equilibrium and applying a small voltage to the molecular junction. Traditionally, this reaction can only be induced photochemically due to orbital symmetry selection rules. By directly tracking the reaction dynamics in situ using single‐molecule Raman spectroscopy, it is shown that for this reaction to be electrically catalyzed the molecule must be sterically maneuvered into a configuration near the transition state at the peak of the energy barrier prior to applying the voltage needed to successfully induce the forbidden transition is applied.more » « less
-
NA (Ed.)Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has been seldom investigated. It is known that solvents can impact the electronic structure of single molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, bridge) of the thiolate on the Au surface as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions.more » « less
-
Magnetic tunnel junction (MTJ) can serve as an excellent testbed for connecting Molecule between two ferromagnetic electrodes. A paramagnetic molecule covalently bonded to two ferromagnetic electrodes with two thiol functional groups can produce intriguing transport and magnetic properties. We have chemically bonded paramagnetic molecules between two ferromagnetic electrodes of a MTJ along the exposed side edges. In this paper we discussed the observation of Molecule induced dramatic changes in the magnetic and transport properties of the conventional magnetic tunnel junctions. Paramagnetic molecules were chemically bonded to ferromagnetic electrodes to bridge them across the insulating spacer along the exposed edges. Paramagnetic molecular channels along the tunnel junction edges decreased the overall current, through tunnel barrier and molecular channels, > 5 orders of magnitude below the leakage current of the bare tunnel junction at room temperature. These molecules caused significant changes in the spin density of states due to potential spin filtering effect. Also, paramagnetic molecules produced antiferromagnetic coupling between the affected magnetic electrodes. In this state spin transport in the magnetic tunnel junction based molecular devices plummeted by several orders. It is also noteworthy that our experimental studies provide a platform to connect a vast variety of ferromagnetic leads to the even broader array of high potential molecules such as single molecular magnets, porphyrin, and single ion molecules. The strength of exchange coupling between ferromagnetic electrodes and molecules can be tailored by utilizing different tethers and terminal functional groups. The MTJMSD can provide an advanced form of logic and memory devices, including a testbed for the Molecule based quantum computation devices. Future study about the interaction between molecular magnets and ferromagnets and interaction of thiol ended alkanes with ferromagnets will be of very valuable. This study indicates the potential of magnetic molecules as a mean to transforming conventional magnetic tunnel junctions and producing unprecedented magnetic and transport properties.more » « less
An official website of the United States government
