ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment.
more »
« less
Delayed Dynamic Triggering and Enhanced High‐Frequency Seismic Radiation From Brittle Rock Damage in 3D Dynamic Rupture Simulations
Abstract Using a novel high‐performance computing implementation of a nonlinear continuum damage‐breakage model, we explore interactions between 3D co‐seismic off‐fault damage, seismic radiation, and rupture dynamics. Our simulations demonstrate that off‐fault damage enhances high‐frequency wave radiation above 1 Hz, reduces rupture speed and alters the total kinetic energy. We identify distinct damage regimes separated by solid‐granular transition, with smooth distributions under low damage conditions transitioning to localized, mesh‐independent shear bands upon reaching brittle failure. The shear band orientations depend systematically on the background stress and agree with analytical predictions. The brittle damage inhibits transitions to supershear rupture propagation and the rupture front strain field results in locally reduced damage accumulation during supershear transition. The dynamically generated damage yields uniform and isotropic ratios of fault‐normal to fault‐parallel high‐frequency ground motions. Co‐seismic damage zones exhibit depth‐dependent width variations, becoming broader near the Earth's surface consistent with field observations, even under uniform stress conditions. We discover a new delayed dynamic triggering mechanism in multi‐fault systems, driven by reductions in elastic moduli and the ensuing stress heterogeneities in 3D tensile fault step‐overs. This mechanism affects the static and dynamic stress fields and includes the formation of high shear‐traction fronts around localized damage zones. The brittle damage facilitates rupture cascading across faults, linking delay times directly to damage rheology and fault zone evolution. Our results help explain near‐fault high‐frequency isotropic radiation and delayed rupture triggering, improving our understanding of earthquake processes, seismic wavefields and fault system interactions.
more »
« less
- PAR ID:
- 10648448
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 9
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Seismic faults are surrounded by damaged rocks with reduced rigidity and enhanced attenuation. These damaged fault zone structures can amplify seismic waves and affect earthquake dynamics, yet they are typically omitted in physics‐based regional ground motion simulations. We report on the significant effects of a shallow, flower‐shaped fault zone in foreshock‐mainshock 3D dynamic rupture models of the 2019 Ridgecrest earthquake sequence. We find that the fault zone structure both amplifies and reduces ground motions not only locally but at distances exceeding 100 km. This impact on ground motions is frequency‐ and magnitude‐dependent, particularly affecting higher frequency ground motions from the foreshock because its corner frequency is closer to the fault zone's fundamental eigenfrequency. Within the fault zone, the shallow transition to a velocity‐strengthening frictional regime leads to a depth‐dependent peak slip rate increase of up to 70% and confines fault zone‐induced supershear transitions mostly to the fault zone's velocity‐weakening roots. However, the interplay of fault zone waves, free surface reflections, and rupture directivity can generate localized supershear rupture, even in narrow velocity‐strengthening regions, which are typically thought to inhibit supershear rupture. This study demonstrates that shallow fault zone structures may significantly affect intermediate‐ and far‐field ground motions and cause localized supershear rupture penetrating into velocity‐strengthening regions, with important implications for seismic hazard assessment.more » « less
-
Previous geodetic and teleseismic observations of the 2021 Mw 7.4 Maduo earthquake imply surprising but difficult-to-constrain complexity, including rupture across multiple fault segments and supershear rupture. Here, we present an integrated analysis of multi-fault 3D dynamic rupture models, high-resolution optical correlation analysis, and joint optical-InSAR slip inversion. Our preferred model, validated by the teleseismic multi-peak moment rate release, includes unilateral eastward double-onset supershear speeds and cascading rupture dynamically triggering two adjacent fault branches. We propose that pronounced along-strike variation in fracture energy, complex fault geometries, and multi-scale variable prestress drives this event's complex rupture dynamics. We illustrate how supershear transition has signatures in modeled and observed off-fault deformation. Our study opens new avenues to combine observations and models to better understand complex earthquake dynamics, including local and potentially repeating supershear episodes across immature faults or under heterogeneous stress and strength conditions, which are potentially not unusual.more » « less
-
Abstract Previous geodetic and teleseismic observations of the 2021 7.4 Maduo earthquake imply surprising but difficult‐to‐constrain complexity, including rupture across multiple fault segments and supershear rupture. Here, we present an integrated analysis of multi‐fault 3D dynamic rupture models, high‐resolution optical correlation analysis, and joint optical‐InSAR slip inversion. Our preferred model, validated by the teleseismic multi‐peak moment rate release, includes unilateral eastward double‐onset supershear speeds and cascading rupture dynamically triggering two adjacent fault branches. We propose that pronounced along‐strike variation in fracture energy, complex fault geometries, and multi‐scale variable prestress drives this event's complex rupture dynamics. We illustrate how supershear transition has signatures in modeled and observed off‐fault deformation. Our study opens new avenues to combine observations and models to better understand complex earthquake dynamics, including local and potentially repeating supershear episodes across immature faults or under heterogeneous stress and strength conditions, which are potentially not unusual.more » « less
-
Abstract Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance.more » « less
An official website of the United States government
