Abstract Earthquakes can be dynamically triggered by the passing waves of other distant events. The frequent occurrence of dynamic triggering offers tangible hope in revealing earthquake nucleation processes. However, the physical mechanisms behind earthquake dynamic triggering have remained unclear, and contributions of competing hypotheses are challenging to isolate with individual case studies. To gain a systematic understanding of the spatiotemporal patterns of dynamic triggering, we investigate the phenomenon in southern California from 2008 to 2017. We use the Quake Template Matching catalog and an approach that does not assume an earthquake occurrence distribution. We develop a new set of statistics to examine the significance of seismicity‐rate changes as well as moment‐release changes. Our results show that up to 70% of 1,388 globalM ≥ 6 events may have triggered earthquakes in southern California. The triggered seismicity often occurred several hours after the passing seismic waves. The Salton Sea Geothermal Field, San Jacinto fault, and Coso Geothermal Field are particularly prone to triggering. Although adjacent fault segments can be triggered by the same earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting that the process is primarily governed by local conditions. Further, the occurrence of dynamic triggering does not seem to correlate with ground motion (e.g., peak ground velocity) at the triggered sites. These observations indicate that nonlinear processes may have primarily regulated the dynamic triggering cases.
more »
« less
This content will become publicly available on February 11, 2026
Examining the Role of Elevated and Sustained Strain in Dynamically Triggering Earthquakes on the Anza Section of the San Jacinto Fault
ABSTRACT Microearthquakes can be dynamically triggered in southern California by remote earthquakes. However, directly connecting dynamic triggering mechanisms with observational data remains challenging. One proposed failure mechanism suggests that both the amplitude and duration of cyclic fatigue caused by the passing seismic wave contribute to triggering occurrence. Here, we measure dynamic strains recorded by borehole strainmeters in the Anza section of the San Jacinto fault zone from 710 earthquakes that occurred over 300 km away between 2008 and 2017 to systematically investigate the role of elevated and sustained strain in controlling dynamic triggering. We design a suite of tests to evaluate whether specific amplitude thresholds and durations of strain can predict dynamic triggering cases. We further test whether the peak dynamic strain (PDS) can predict triggering occurrence in combination with the strain amplitude and duration. Based on these tests, there is no strain amplitude–duration threshold that can distinguish triggering occurrence in Anza. Dynamic triggering is more likely to occur if a remote earthquake causes a PDS above 100 nanostrain, though many cases were triggered at smaller PDSs. The lack of clear correlation between triggering and characteristics of the dynamic strain field suggests that the tested features of the incoming waves do not determine triggering occurrence and local fault conditions and slip processes are more important in controlling dynamic triggering in Anza.
more »
« less
- Award ID(s):
- 2022441
- PAR ID:
- 10648616
- Publisher / Repository:
- SSA
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- Volume:
- 115
- Issue:
- 2
- ISSN:
- 0037-1106
- Page Range / eLocation ID:
- 452 to 468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dynamic triggering of earthquakes has been reported at various fault systems. The triggered earthquakes are thought to be caused either directly by dynamic stress changes due to the passing seismic waves, or indirectly by other nonlinear processes that are initiated by the passing waves. Distinguishing these physical mechanisms is difficult because of the general lack of high‐resolution earthquake catalogs and robust means to quantitatively evaluate triggering responses, particularly, delayed responses. Here we use the high‐resolution Quake Template Matching catalog in Southern California to systematically evaluate teleseismic dynamic triggering patterns in the San Jacinto Fault Zone and the Salton Sea Geothermal Field from 2008 to 2017. We develop a new statistical approach to identify triggered cases, finding that approximately 1 out of every 5 globalMw ≥ 6 earthquakes dynamically trigger microearthquakes in Southern California. The triggering responses include both instantaneous and delayed triggering, showing a highly heterogeneous pattern and indicating possible evolving triggering thresholds. We do not observe a clear peak ground velocity triggering threshold that can differentiate triggering earthquakes from nontriggering events, but there are subtle differences in the frequency content of the ground motion that may differentiate the earthquakes. In contrast to the depth distribution of background seismicity, the identified triggered earthquakes tend to concentrate at the edges of the seismogenic zones. Although instantaneously triggered earthquakes are likely a result of dynamic Coulomb stress changes, the cases of delayed‐dynamic triggering are best explained by nonlinear triggering processes, including cyclic material fatigue, accelerated transient creep, and stochastic frictional heterogeneities.more » « less
-
SUMMARY In the Gulf of California, Mexico, the relative motion across the North America–Pacific boundary is accommodated by a series of marine transform faults and spreading centres. About 40 M> 6 earthquakes have occurred in the region since 1960. On 2009 August 3, an Mw 6.9 earthquake occurred near Canal de Ballenas in the region. The earthquake was a strike-slip event with a shallow hypocentre that is likely close to the seafloor. In contrast to an adjacent M7 earthquake, this earthquake triggered a ground-motion-based earthquake early warning algorithm being tested in southern California (∼600 km away). This observation suggests that the abnormally large ground motions and dynamic strains observed for this earthquake relate to its rupture properties. To investigate this possibility, we image the rupture process and resolve the slip distribution of the event using a P-wave backprojection approach and a teleseismic, finite-fault inversion method. Results from these two independent analyses indicate a relatively simple, unilateral rupture propagation directed along-strike in the northward direction. However, the average rupture speed is estimated around 4 km s−1, suggesting a possible supershear rupture. The supershear speed is also supported by a Rayleigh wave Mach cone analysis, although uncertainties in local velocity structure preclude a definitive conclusion. The Canal de Ballenas earthquake dynamically triggered seismicity at multiple sites in California, with triggering response characteristics varying from location-to-location. For instance, some of the triggered earthquakes in California occurred up to 24 hr later, suggesting that nonlinear triggering mechanisms likely have modulated their occurrence.more » « less
-
Abstract We report sequential triggered slip at 271–384 km distances on the San Andreas, Superstition Hills, and Imperial faults with an apparent travel-time speed of 2.2 ± 0.1 km/s, following the passage of surface waves from the 4 July 2019 (17:33:49 UTC) Mw 6.4 and 6 July 2019 (03:19:53 UTC) Mw 7.1 Ridgecrest earthquakes. Slip on remote faults was not triggered instantaneously but developed over several minutes, increasing in duration with distance. Maximum slip amplitudes varied from 10 μm to 5 mm within minutes of slip nucleation, but on the southernmost San Andreas fault slip continued for two months and was followed on 16 September 2019 by a swarm of microearthquakes (Mw≤3.8) near Bombay Beach. These observations add to a growing body of evidence that fault creep may result in delayed triggered seismicity. Displacements across surface faults in the southern epicentral region and on the Garlock fault in the months following the Ridgecrest earthquakes were negligible (<1.1 mm), and they are interpreted to characterize surface strain adjustments in the epicentral region, rather than to result from discrete slip on surface faults.more » « less
-
Abstract In areas of induced seismicity, earthquakes can be triggered by stress changes due to fluid injection and static deformation from fault slip. Here we present a method to distinguish between injection‐driven and earthquake‐driven triggering of induced seismicity by combining a calibrated, fully coupled, poroelastic stress model of wastewater injection with interpretation of a machine learning algorithm trained on both earthquake catalog and modeled stress features. We investigate seismicity from Paradox Valley, Colorado as an ideal test case: a single, high‐pressure injector that has induced thousands of earthquakes since 1991. Using feature importance analysis, we find that injection‐driven earthquakes are approximately 225% of the total catalog but act as background events that can trigger subsequent aftershocks. Injection‐driven events also have distinct spatiotemporal clustering properties with a larger b‐value, closer proximity to the well, and earlier occurrence in the injection history. Generalization of our technique can help characterize triggering processes in other regions where induced seismicity occurs.more » « less
An official website of the United States government
