skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 10, 2026

Title: The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Abstract. Ice-free land comprises 26 % of the Earth's surface and holds liquid water that delineates ecosystems, affects global geochemical cycling, and modulates sea levels. However, we currently lack the capacity to simulate and predict these terrestrial water changes across the full range of relevant spatial (watershed to global) and temporal (monthly to millennial) scales. To address this knowledge gap, we present the Water Table Model (WTM), which integrates coupled components to compute dynamic lake and groundwater levels. The groundwater component solves the 2D horizontal groundwater flow equation using non-linear equation solvers from the C++ PETSc (Portable, Extensible Toolkit for Scientific Computation) library. The dynamic lake component makes use of the Fill–Spill–Merge (FSM) algorithm to move surface water into lakes, where it may evaporate or affect groundwater flow. In a proof-of-concept application, we demonstrate the continental-scale capabilities of the WTM by simulating the steady-state climate-driven water table for the present day and the Last Glacial Maximum (LGM; 21 000 calendar years before present) across the North American continent. During the LGM, North America stored an additional 14.98 cm of sea-level equivalent (SLE) in lakes and groundwater compared to the climate-driven present-day scenario. We compare the present-day result to other simulations and real-world data. Open-source code for the WTM is available on GitHub and Zenodo.  more » « less
Award ID(s):
1903606
PAR ID:
10648710
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
18
Issue:
5
ISSN:
1991-9603
Page Range / eLocation ID:
1463 to 1486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We used the Water Table Model (WTM) to simulate steady-state water tables at the Last Glacial Maximum (LGM, 21,000 calendar years before present), and in the present day. This dataset includes two GeoTIFF files (one for each time simulated). These files represent steady-state water table depth, including both groundwater table and lake surfaces. Water table depth is reported in metres relative to the land surface: negative numbers represent groundwater, and positive numbers represent lakes. The WTM does not include ice hydrology, such that lakes atop ice sheets may not be well represented. 
    more » « less
  2. Abstract Accurate groundwater representation in land surface models (LSMs) is vital for water and energy cycle studies, water resource assessments, and climate projections. Yet, many LSMs do not consider key processes including lateral groundwater flow and aquifer pumping, especially at the global scale. This study simulates these processes using an enhanced version of the Community Land Model (CLM5) and evaluates their roles at three spatial resolutions (0.5°, 0.25°, 0.1°). Results show that lateral flow strongly modulates water table depth and capillary rise at all resolutions. The magnitude of mean lateral flow increases from 25 mm/year at 0.5° to 36 mm/year at 0.25°, and 52 mm/year at 0.1° resolution, with pumping inducing lateral flow even at 0.5° (∼50 km), a typical grid size in global LSMs. Further, lateral flow alters runoff in regions with high recharge and shallow water table (e.g., eastern North America and Amazon basin), and soil moisture and ET in regions with comparatively low recharge and deeper water table (e.g., western North America, central Asia, and Australia) through enhanced capillary rise. Runoff alteration by lateral flow increases substantially with resolution, from a maximum of 15 mm/month at 0.5° to 20 mm/month and 25 mm/month at 0.25° and 0.1°, respectively; the impact of resolution on soil moisture and ET is less pronounced. While the model does not fully capture deeper water tables—warranting further enhancements—it provides valuable insights on how lateral groundwater flow impacts land surface processes, highlighting the importance of lateral groundwater flow and pumping in global LSMs. 
    more » « less
  3. Abstract At present, tides supply approximately half (1 TW) of the energy necessary to sustain the global deep meridional overturning circulation (MOC) through diapycnal mixing. During the Last Glacial Maximum (LGM; 19,000–26,500 years BP), tidal dissipation in the open ocean may have strongly increased due to the 120‐ to 130‐m global mean sea level drop and changes in ocean basin shape. However, few investigations into LGM climate and ocean circulation consider LGM tidal mixing changes. Here, using an intermediate complexity climate model, we present a detailed investigation on how changes in tidal dissipation would affect the global MOC. Present‐day and LGM tidal constituents M2, S2, K1, and O1are simulated using a tide model and accounting for LGM bathymetric changes. The tide model results suggest that the LGM energy supply to the internal wave field was 1.8–3 times larger than at present and highly sensitive to Antarctic and Laurentide ice sheet extent. Including realistic LGM tide forcing in the LGM climate simulations leads to large increases in Atlantic diapycnal diffusivities and strengthens (by 14–64% at 32°S) and deepens the Atlantic MOC. Increased input of tidal energy leads to a greater drawdown of North Atlantic Deep Water and mixing with Antarctic Bottom Water altering Atlantic temperature and salinity distributions. Our results imply that changes in tidal dissipation need be accounted for in paleoclimate simulation setup as they can lead to large differences in ocean mixing, the global MOC, and presumably also ocean carbon and other biogeochemical cycles. 
    more » « less
  4. null (Ed.)
    Abstract The tracks, intensities, and other properties of tropical cyclones downscaled from three models’ simulations of the Last Glacial Maximum (LGM) are analyzed and compared to those of storms downscaled from simulations of the present climate. Globally, the mean maximum intensity of storms generated from each model is lower at LGM, as is the fraction of all storms that reach intensities of category 4 or higher on the Saffir–Simpson hurricane wind scale. The median day of the storm season shifts earlier by an average of one week in all three models in both hemispheres. Two of the three models’ LGM simulations feature a reduction in storm count and global power dissipation index compared to the current climate, but a third shows no significant difference between the two climates. Although each model is forced by the same global changes, differences in the way sea surface temperatures and other large-scale environmental conditions respond in the North Atlantic impart significant differences in the climatology at LGM between models. Our results from the cold LGM provide a novel opportunity to assess how tropical cyclones respond to climate changes. 
    more » « less
  5. Abstract Groundwater flow direction within the critical zone of headwater catchments is often assumed to mimic land surface topographic gradients. However, groundwater hydraulic gradients are also influenced by subsurface permeability contrasts, which can result in variability in flow direction and magnitude. In this study, we investigated the relationship between shallow groundwater flow direction, surface topography, and the subsurface topography of low permeability units in a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), NH. We continuously monitored shallow groundwater levels in the solum throughout several seasons in a well network (20 wells of 0.18–1.1 m depth) within the upper hillslopes of Watershed 3 of the HBEF. Water levels were also monitored in four deeper wells, screened from 2.4 to 6.9 m depth within glacial drift of the C horizon. We conducted slug tests across the well network to determine the saturated hydraulic conductivity (Ksat) of the materials surrounding each well. Results showed that under higher water table regimes, groundwater flow direction mimics surface topography, but under lower water table regimes, flow direction can deviate as much as 56 degrees from surface topography. Under these lower water table conditions, groundwater flow direction instead followed the topography of the top of the C horizon. The interquartile range ofKsatwithin the C horizon was two orders of magnitude lower than within the solum. Overall, our results suggest that the land surface topography and the top of the C horizon acted as end members defining the upper and lower bounds of flow direction variability. This suggests that temporal dynamics of groundwater flow direction should be considered when calculating hydrologic fluxes in critical zone and runoff generation studies of headwater catchments that are underlain by glacial drift. 
    more » « less