Abstract We present theoretical studies of above threshold ionization (ATI) using sculpted laser pulses. The time-dependent Schrödinger equation is solved to calculate the ATI energy and momentum spectra, and a qualitative understanding of the electron motion after ionization is explored using the simple man’s model and a classical model that solves Newton’s equation of motion. Results are presented for Gaussian and Airy laser pulses with identical power spectra, but differing spectral phases. The simulations show that the third order spectral phase of the Airy pulse, which can alter the temporal envelope of the electric field, causes changes to the timing of ionization and the dynamics of the rescattering process. Specifically, the use of Airy pulses in the ATI process results in a shift of the Keldysh plateau cutoff to lower energy due to a decreased pondermotive energy of the electron in the laser field, and the side lobes of the Airy laser pulse change the number and timing of rescattering events. This translates into changes to the high-order ATI plateau and intra- and intercycle interference features. Our results also show that laser pulses with identical carrier envelope phases and nearly identical envelopes yield different photoelectron momentum distributions, which are a direct result of the pulse’s spectral phase.
more »
« less
Spectral phase pulse shaping reduces ground state depletion in high-order harmonic generation
Abstract High-order harmonic generation (HHG) has become an indispensable process for generating attosecond pulse trains and single attosecond pulses used in the observation of nuclear and electronic motion. As such, improved control of the HHG process is desirable, and one such possibility for this control is through the use of structured laser pulses. We present numerical results from solving the one-dimensional time-dependent Schrödinger equation for HHG from hydrogen using Airy and Gaussian pulses that differ only in their spectral phase. Airy pulses have identical power spectra to Gaussian pulses, but different spectral phases and temporal envelopes. We show that the use of Airy pulses results in less ground state depletion compared to the Gaussian pulse, while maintaining harmonic yield and cutoff. Our results demonstrate that Airy pulses with higher intensity can produce similar HHG spectra to lower intensity Gaussian pulses without depleting the ground state. The different temporal envelopes of the Gaussian and Airy pulses lead to changes in the dynamics of the HHG process, altering the time-dependence of the ground state population and the emission times of the high harmonics. Graphical abstract
more »
« less
- Award ID(s):
- 2207209
- PAR ID:
- 10648783
- Publisher / Repository:
- Spring Nature
- Date Published:
- Journal Name:
- The European Physical Journal D
- Volume:
- 78
- Issue:
- 8
- ISSN:
- 1434-6060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Studies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution. Moreover, we report a delay-dependent even-order harmonic frequency shift that is proportional to the time derivative of the THz field. This suggests a limitation of the static symmetry breaking interpretation and implies that the resultant attosecond bursts are aperiodic, thus providing a frequency domain probe of attosecond transients while opening opportunities in precise attosecond pulse shaping.more » « less
-
Abstract We present the results of an experiment investigating the generation of high-order harmonics by a femtosecond near-infrared (NIR) laser pulse in the presence of an extreme ultraviolet (XUV) field provided by a free-electron laser (FEL), a process referred to as XUV-assisted high-order harmonic generation (HHG). Our experimental findings show that the XUV field can lead to a small enhancement in the harmonic yield when the XUV and NIR pulses overlap in time, while a strong decrease of the HHG yield and a red shift of the HHG spectrum is observed when the XUV precedes the NIR pulse. The latter observations are in qualitative agreement with model calculations that consider the effect of a decreased number of neutral emitters but are at odds with the predicted effect of the correspondingly increased ionization fraction on the phase matching. Our study demonstrates the technical feasibility of XUV-assisted HHG experiments at FELs, which may provide new avenues to investigate correlation-driven electron dynamics as well as novel ways to study and control propagation effects and phase matching in HHG.more » « less
-
High-order harmonic generation in atomic gases is important for several applications in ultrafast strong-field physics, ranging from attosecond pulse generation to ultrafast spectroscopy and imaging of different forms of matter. In the case of the generation with focused short Gaussian pulses, recent theoretical studies indicate that the conversion efficiency depends on the spatial phase distribution of the driving laser pulse which scales with the Porras factor. Using theoretical analysis and the results of numerical simulations, we find that for positive Porras factors the contribution of the Gouy phase to phase matching can be balanced and the conversion efficiency can be significantly enhanced as compared to a standard laser setup. Specifically, our results indicate that for a Porras factor of g0 = 1.2, the conversion efficiency as well as the cutoff of the harmonic spectra can be optimized while the harmonic lines remain narrow, which may be interesting for spectroscopic applications.more » « less
-
We analytically and numerically investigate the emission of high-order harmonic radiation from model solids by intense few-cycle midinfrared laser pulses. In single-active-electron approximation, we expand the active electron’s wave function in a basis of adiabatic Houston states and describe the solid’s electronic band structure in terms of an adjustable Kronig-Penney model potential. For high-order harmonic generation (HHG) from MgO crystals, we examine spectra from two-band and converged multiband numerical calculations. We discuss the characteristics of intra- and interband contributions to the HHG spectrum for computations including initial crystal momenta either from the point at the center of the first Brillouin zone (BZ) only or from the entire first BZ. For sufficiently high intensities of the driving laser field, we find relevant contributions to HHG from the entire first BZ. Based on numerically calculated spectra, we scrutinize the cutoff harmonic orders as a function of the laser peak intensity and find good qualitative agreement with our analytical saddle-point-approximation predictions and published theoretical data.more » « less
An official website of the United States government

