Abstract We perform a numerical study of the longevity of a super-hydrophobic surface (SHS) in under-saturated, stationary liquid. We numerically solve the spatial-temporal evolution of the gas concentration in the liquid, the time-variation of mass flux of gas out of the plastron, as well as the time required for the gas in the plastron to be fully dissolved (i.e., the plastron lifetime). We find that the profiles of gas concentration at different times are self-similar, and the mass flux reduces with time (t) at a rate of 1/t0.5. In addition, we examine the impact of texture parameters, including pitch, gas fraction, texture height, and advancing contact angle, on the diffusion process. Our results show that both plastron lifetime and diffusion length increase with increasing the gas fraction or increasing the texture height and are independent of the advancing contact angle and pitch. We propose simple analytical models for plastron lifetime and diffusion length. We show that the model has a fair agreement with the experimental data reported in the literature, and can predict the longevity for SHS with various texture geometries, texture sizes, and under different degrees of under-saturations. Our models could guide the design of long-life SHS for underwater applications such as reducing skin-friction drag and preventing biofouling.
more »
« less
Extend Plastron Longevity on Superhydrophobic Surface Using Gas Soluble and Gas Permeable Polydimethylsiloxane (PDMS)
The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface. We performed experiments for PDMS surfaces consisting of micro-posts and micro-holes. We measured the plastron longevity in undersaturated liquids by an optical method. Our results showed that the plastron longevity increased with increasing the thickness of the PDMS surface, suggesting that gas initially dissolved between polymer chains was transferred to the liquid, delaying the wetting transition. Numerical simulations confirmed that a thicker PDMS material released more gas across the PDMS–liquid interface, resulting in a higher gas concentration near the plastron. Furthermore, we found that plastron longevity increased with increasing pressure differences across the PDMS material, indicating that the plastron was replenished by the gas injected through the PDMS. With increasing pressure, the mass flux caused by gas injection surpassed the mass flux caused by the diffusion of gas from plastron to liquid. Overall, our results provide new solutions for extending plastron longevity and will have significant impacts on engineering applications where a stable plastron is desired.
more »
« less
- PAR ID:
- 10648918
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Biomimetics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2313-7673
- Page Range / eLocation ID:
- 45
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We develop a two-dimensional model for the transient diffusion of gas from the cavities in ridge-type structured surfaces to a quiescent liquid suspended above them in the Cassie state to predict the location of the liquid vapor-interface (meniscus) as a function of time. The transient diffusion equation is numerically solved by a Chebyshev collocation (spectral) method coupled to the Young-Laplace equation and the ideal gas law. We capture the effects of variable meniscus curvature and, subsequently, when applicable, movement of triple contact lines. Results are presented for the evolution of the dissolved gas concentration field in the liquid and, when applicable, the time it takes for a meniscus to depin and that for longevity, i.e., the onset of the Cassie to Wenzel state transition. Two configurations are examined; viz., one where an impermeable membrane pressurizes the liquid above the ridges and one where hydrostatic pressure is considered and the top of the liquid is exposed to non-condensable gas.more » « less
-
In this work, we experimentally investigated the impact of surface roughness on drag reduction as well as the plastron stability of superhydrophobic surfaces (SHSs) in turbulent flows. A series of SHSs were fabricated by spraying hydrophobic nanoparticles on sandpapers. By changing the grit size of sandpapers from 240 to 1500, the root mean square roughness height (krms) of the SHSs varied from 4 to 14 μm. The experiments were performed in a turbulent channel flow facility, where the mean flow speed (Um) varied from 0.5 to 4.4 m/s, and the Reynolds number (Rem) based on Um and channel height changed from 3400 to 26 400. The drag reduction by SHSs was measured based on pressure drops in the fully developed flow region. The plastron status and gas fraction (φg) were simultaneously monitored by reflected-light microscopy. Our results showed a strong correlation between drag reduction and krms+ = krms/δv, where δv is the viscous length scale. For krms+ < 1, drag reduction was independent of krms+. A maximum 47% drag reduction was observed. For 1 < krms+ < 2, less drag reduction was observed due to the roughness effect. And for krms+ > 2, the SHSs caused an increase in drag. Furthermore, we found that surface roughness influenced the trend of plastron depletion in turbulent flows. As increasing Rem, φg reduced gradually for SHSs with large krms, but reduced rapidly and maintained as a constant for SHSs with small krms. Finally, we found that as increasing Rem, the slip length of SHS reduced, although φg was nearly a constant.more » « less
-
Abstract We experimentally studied the effect of gas flow rateQon the bubble formation on a superhydrophobic surface (SHS). We variedQin the range of 0.001 < Q/Qcr < 0.35, whereQcris the critical value for a transition from the quasi‐static regime to the dynamic regime. The bubble geometrical parameters and forces acting on the bubble were calculated. We found that asQincrease, the bubble detached volume (Vd) increased. After proper normalization, the relationship betweenVdandQgenerally agreed with those observed for bubbles detaching from hydrophilic and hydrophobic surfaces. Furthermore, we found thatQhad a minor impact on bubble shape and the duration of bubble necking due to the negligible momentum of injected gas compared to surface tension and hydrostatic pressure. Lastly, we explained the primary reason for the largerVdat higher flow rates, which was increased bubble volume during the necking process. Our results enhanced the fundamental understanding of bubble formation on complex surfaces and could provide potential solutions for controlling bubble generation and extending the application of SHS for drag reduction, anti‐fouling, and heat and mass transfer enhancement.more » « less
-
null (Ed.)Helium implantation in surfaces is of interest for plasma-facing materials and other nuclear applications. Vanadium as both a representative bcc material and a material relevant for fusion applications is implanted using a Helium ion beam microscope, and the resulting swelling and nanomechanical properties are quantifed. These values are put in correlation to data obtained from micro-residual stress measurements using a focused ion beam-based ring-core technique. We found that the swelling measured is similar to literature values. Further, we are able to measure the surface stress caused by the implantation and fnd that it approaches the yield strength of the material at blistering doses. The simple calculations performed in the present work, along with several geometrical considerations deduced from experimental results confrm the driving force for blister formation comes from bulging resulting mainly from gas pressure buildup, rather than solely stress-induced bucklingmore » « less
An official website of the United States government

