Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15M⊙and drops off atMMS > 0.2M⊙, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario.
more »
« less
This content will become publicly available on September 2, 2026
A Search for Subdwarf B Binaries Using Pulsation Timing from TESS
Abstract Hot subdwarf B (sdB) stars are post-main-sequence stars of high temperature and gravity. Approximately 30% of sdBs exhibit stable pressure and/or gravity-mode pulsations, which can be used via the timing method to test for companion stars and determine their orbital solutions. We used short cadence data from the Transiting Exoplanet Survey Satellite (TESS) to search for previously undiscovered companions to sdBs. In this paper, we focus on searching for companions with orbital periods shorter than 13.5 days which are detectable within one sector of TESS data (about 27 days). The timing method requires that we derive pulsation frequencies in subsets of data significantly shorter than the periods we are searching for, which we set at 0.5–1.5 day. We investigated ten sdB stars with previously detectedp-mode pulsations for which at least onep-mode pulsation remains detectable with a signal-to-noise ratio > 4 within data subsets of duration 0.5–1.5 day. We find that two (TIC 202354658 and TIC 69298924) of these ten sdB stars likely have white-dwarf companions and set limits on companion masses for the other eight sdB stars.
more »
« less
- Award ID(s):
- 2108975
- PAR ID:
- 10648922
- Publisher / Repository:
- The Astronomical Journal
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 170
- Issue:
- 4
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 199
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of two quadruple star systems—TIC 285853156 and TIC 392229331—each consisting of two bound eclipsing binary stars. Among the most compact quadruples known, TIC 392229331 and TIC 285853156 have the second and third shortest outer orbital periods (145 days and 152 days, respectively) after BU Canis Minoris (122 days). We demonstrate that both systems are long-term dynamically stable despite substantial outer orbital eccentricities (0.33 for TIC 285853156 and 0.56 for TIC 392229331). We previously reported these systems in V. B. Kostov et al. and V. B Kostov et al. as 2 + 2 hierarchical quadruple candidates producing two sets of primary and secondary eclipses in TESS data, as well as prominent eclipse timing variations on both binary components. We combine all available TESS data and new spectroscopic observations into a comprehensive photodynamical model, proving that the component binary stars are gravitationally bound in both systems and finding accurate stellar and orbital parameters for both systems, including very precise determinations of the outer periods. TIC 285853156 and TIC 392229331 represent the latest addition to the small population of well-characterized proven quadruple systems dynamically interacting on detectable timescales.more » « less
-
Context. About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to different phenomena. Aims. Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods. By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia , and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection effect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs with white dwarf companions. Results. The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, differs from those with white dwarf companions, implying they come from different populations. By comparing the period and minimum companion mass distributions, we find that the reflection effect systems all have M dwarf or brown dwarf companions, and that there seem to be several different populations of hot subdwarfs with white dwarf binaries – one with white dwarf minimum masses around 0.4 M ⊙ , one with longer periods and minimum companion masses up to 0.6 M ⊙ , and at the shortest period, another with white dwarf minimum masses around 0.8 M ⊙ . We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.more » « less
-
With the precision now afforded by modern space-based photometric observations from the retired K2 and current TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics. To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post- Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations. As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are (i) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface chemical transition from μe = 2 to μe = 1, simulating a surface hydrogen layer. A comparison of Newtonian and 1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a typical WD, this fractional difference is ∼10−4 and is greater than the period uncertainty σΠ/Π of many WD pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in principle, include GR effects to 1PN order.more » « less
-
Context. Pulsation frequencies reveal the interior structures of white dwarf stars, shedding light on the properties of these compact objects that represent the final evolutionary stage of most stars. Two-minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS) records pulsation signatures from bright white dwarfs over the entire sky. Aims. As part of a series of first-light papers from TESS Asteroseismic Science Consortium Working Group 8, we aim to demonstrate the sensitivity of TESS data, by measuring pulsations of helium-atmosphere white dwarfs in the DBV instability strip, and what asteroseismic analysis of these measurements can reveal about their stellar structures. We present a case study of the pulsating DBV WD 0158−160 that was observed as TIC 257459955 with the two-minute cadence for 20.3 days in TESS Sector 3. Methods. We measured the frequencies of variability of TIC 257459955 with an iterative periodogram and prewhitening procedure. The measured frequencies were compared to calculations from two sets of white dwarf models to constrain the stellar parameters: the fully evolutionary models from LPCODE and the structural models from WDEC . Results. We detected and measured the frequencies of nine pulsation modes and eleven combination frequencies of WD 0158−160 to ∼0.01 μ Hz precision. Most, if not all, of the observed pulsations belong to an incomplete sequence of dipole (ℓ = 1) modes with a mean period spacing of 38.1 ± 1.0 s. The global best-fit seismic models from both LPCODE and WDEC have effective temperatures that are ≳3000 K hotter than archival spectroscopic values of 24 100–25 500 K; however, cooler secondary solutions are found that are consistent with both the spectroscopic effective temperature and distance constraints from Gaia astrometry. Conclusions. Our results demonstrate the value of the TESS data for DBV white dwarf asteroseismology. The extent of the short-cadence photometry enables reliably accurate and extremely precise pulsation frequency measurements. Similar subsets of both the LPCODE and WDEC models show good agreement with these measurements, supporting that the asteroseismic interpretation of DBV observations from TESS is not dominated by the set of models used. However, given the sensitivity of the observed set of pulsation modes to the stellar structure, external constraints from spectroscopy and/or astrometry are needed to identify the best seismic solutions.more » « less
An official website of the United States government
