Abstract We present a chemodynamical analysis of 11,562 metal-rich, high-eccentricity halo-like main-sequence stars, which have been referred to as the Splash or Splashed Disk, selected from the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope. When divided into two groups, a low-[ α /Fe] population (LAP) and a high-[ α /Fe] population (HAP), based on kinematics and chemistry, we find that they exhibit very distinct properties, indicative of different origins. From a detailed analysis of their orbital inclinations, we suggest that the HAP arises from a large fraction (∼90%) of heated disk stars and a small fraction (∼10%) of in situ stars from a starburst population, likely induced by interaction of the Milky Way with the Gaia-Sausage/Enceladus (GSE) or another early merger. The LAP comprises about half accreted stars from the GSE and half formed by the GSE-induced starburst. Our findings further imply that the Splash stars in our sample originated from at least three different mechanisms: accretion, disk heating, and a merger-induced starburst.
more »
« less
This content will become publicly available on August 1, 2026
Deciphering the Milky Way’s star formation at cosmic noon with high proper-motion stars: A precursor to the merger-driven starburst
Context. Evidence suggests that the Milky Way (MW) underwent a major collision with the Gaia–Sausage/Enceladus (GSE) dwarf galaxy around cosmic noon. While GSE has since been fully disrupted, it brought in ex situ stars and dynamically heated in situ stars into the halo. In addition, the gas-rich merger may have triggered a burst of in situ star formation, potentially giving rise to a chemically distinct stellar component. Aims. We investigated the region of phase space where stars formed during the GSE merger likely reside, and retain distinct chemical and dynamical signatures. Methods. Building on our previous investigation of metallicity ([Fe/H]) and vertical angular momentum (LZ) distributions, we analysed spectroscopic samples from GALAH, APOGEE, SDSS, and LAMOST, combined withGaiakinematics. We focused on high proper-motion stars as effective tracers of the phase-space volume likely influenced by the GSE merger. To correct for selection effects, we incorporated metallicity estimates derived from SDSS and SMSS photometry. Results. Our analysis reveals that low-αstars with GSE-like kinematics exhibit bimodality in [Na/Fe] and [Al/Fe] at −1.0 ≲[Fe/H] ≲ −0.4. One group follows the low light-element abundances of GSE stars, while another exhibits enhanced values. These low-α, high-Na stars have eccentric orbits but are more confined to the inner MW. Eos overlaps with a high-eccentricity subset of these stars, implying that it constitutes a smaller structure nested within the broader population. After correcting for sampling biases, we estimated a population ratio of approximately 1:10 between the low-α, high-Na stars and the GSE debris. Conclusions. These results suggest that the low-α, high-Na stars formed in a compact region, likely fuelled by gas from the GSE progenitor, analogous to clumpy star-forming clouds seen in high-redshift galaxies. Such stars may trace the first sparks of more extensive merger-driven starburst activity.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10649086
- Publisher / Repository:
- AAP
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 700
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A273
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ.more » « less
-
ABSTRACT The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar durations of star formation prior to their merger, they differ in [α/Fe]-[Fe/H] space, with the GES population bending to lower [α/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a ‘Milky Way’ to argue that the different tracks of the halo stars through the [α/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [α/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type II SNe to Type Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [α/Fe]. Thus the different positions of the downturns in the [α/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies.more » « less
-
Based on high-quality Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR17 and Gaia DR3 data for 1742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disk ( V ϕ < 100 km s −1 ), we used the nonlinear technique of unsupervised analysis t-Distributed Stochastic Neighbor Embedding (t-SNE) to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Additionally, we obtained orbital parameters for each star using the nonaxisymmetric gravitational potential GravPot16 . Seven structures are detected, including Splash, Gaia-Sausage-Enceladus (GSE), the high- α heated-disk population, N-C-O peculiar stars, and inner disk-like stars, plus two other groups that did not match anything previously reported in the literature, here named Galileo 5 and Galileo 6 (G5 and G6). These two groups overlap with Splash in [Fe/H], with G5 having a lower metallicity than G6, and they are both between GSE and Splash in the [Mg/Mn] versus [Al/Fe] plane, with G5 being in the α -rich in situ locus and G6 on the border of the α -poor in situ one. Nonetheless, their low [Ni/Fe] hints at a possible ex situ origin. Their orbital energy distributions are between Splash and GSE, with G5 being slightly more energetic than G6. We verified the robustness of all the obtained groups by exploring a large range of t-SNE parameters, applying it to various subsets of data, and also measuring the effect of abundance errors through Monte Carlo tests.more » « less
-
ABSTRACT We use accurate estimates of aluminium abundance from the APOGEE Data Release 17 and Gaia Early Data Release 3 astrometry to select a highly pure sample of stars with metallicity −1.5 ≲ [Fe/H] ≲ 0.5 born in-situ in the Milky Way proper. The low-metallicity ([Fe/H] ≲ −1.3) in-situ component we dub Aurora is kinematically hot with an approximately isotropic velocity ellipsoid and a modest net rotation. Aurora stars exhibit large scatter in metallicity and in many element abundance ratios. The median tangential velocity of the in-situ stars increases sharply with metallicity between [Fe/H] = −1.3 and −0.9, the transition that we call the spin-up. The observed and theoretically expected age–metallicity correlations imply that this increase reflects a rapid formation of the MW disc over ≈1–2 Gyr. The transformation of the stellar kinematics as a function of [Fe/H] is accompanied by a qualitative change in chemical abundances: the scatter drops sharply once the Galaxy builds up a disc during later epochs corresponding to [Fe/H] > −0.9. Results of galaxy formation models presented in this and other recent studies strongly indicate that the trends observed in the MW reflect generic processes during the early evolution of progenitors of MW-sized galaxies: a period of chaotic pre-disc evolution, when gas is accreted along cold narrow filaments and when stars are born in irregular configurations, and subsequent rapid disc formation. The latter signals formation of a stable hot gaseous halo around the MW progenitor, which changes the mode of gas accretion and allows development of coherently rotating disc.more » « less
An official website of the United States government
