The inherent nonlinearity of the power flow equations poses significant challenges in accurately modeling power systems, particularly when employing linearized approximations. Although power flow linearizations provide computational efficiency, they can fail to fully capture nonlinear behavior across diverse operating conditions. To improve approximation accuracy, we propose conservative piecewise linear approximations (CPLA) of the power flow equations, which are designed to consistently over- or under-estimate the quantity of interest, ensuring conservative behavior in optimization. The flexibility provided by piecewise linear functions can yield improved accuracy relative to standard linear approximations. However, applying CPLA across all dimensions of the power flow equations could introduce significant computational complexity, especially for large-scale optimization problems. In this paper, we propose a strategy that selectively targets dimensions exhibiting significant nonlinearities. Using a second-order sensitivity analysis, we identify the directions where the power flow equations exhibit the most significant curvature and tailor the CPLAs to improve accuracy in these specific directions. This approach reduces the computational burden while maintaining high accuracy, making it particularly well-suited for mixed-integer programming problems involving the power flow equations.
more »
« less
Sample-Based Conservative Bias Linear Power Flow Approximations
The power flow equations are central to many problems in power system planning, analysis, and control. However, their inherent non-linearity and non-convexity present substantial challenges during problem-solving processes, especially for optimization problems. Accordingly, linear approximations are commonly employed to streamline computations, although this can often entail compromises in accuracy and feasibility. This paper proposes an approach termed Conservative Bias Linear Approximations (CBLA) for addressing these limitations. By minimizing approximation errors across a specified operating range while incorporating conservativeness (over- or under-estimating quantities of interest), CBLA strikes a balance between accuracy and tractability by maintaining linear constraints. By allowing users to design loss functions tailored to the specific approximated function, the bias approximation approach significantly enhances approximation accuracy. We illustrate the effectiveness of our proposed approach through several test cases.
more »
« less
- Award ID(s):
- 2145564
- PAR ID:
- 10649362
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 6
- Subject(s) / Keyword(s):
- Conservative bias linear approximation power flow approximation
- Format(s):
- Medium: X
- Location:
- Pattaya, Thailand
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Koopman operators provide tractable means of learning linear approximations of non-linear dynamics. Many approaches have been proposed to find these operators, typically based upon approximations using an a-priori fixed class of models. However, choosing appropriate models and bounding the approximation error is far from trivial. Motivated by these difficulties, in this paper we propose an optimization based approach to learning Koopman operators from data. Our results show that the Koopman operator, the associated Hilbert space of observables and a suitable dictionary can be obtained by solving two rank-constrained semi-definite programs (SDP). While in principle these problems are NP-hard, the use of standard relaxations of rank leads to convex SDPs.more » « less
-
Abstract The replacement of a nonlinear parameter-to-observable mapping with a linear (affine) approximation is often carried out to reduce the computational costs associated with solving large-scale inverse problems governed by partial differential equations (PDEs). In the case of a linear parameter-to-observable mapping with normally distributed additive noise and a Gaussian prior measure on the parameters, the posterior is Gaussian. However, substituting an accurate model for a (possibly well justified) linear surrogate model can give misleading results if the induced model approximation error is not accounted for. To account for the errors, the Bayesian approximation error (BAE) approach can be utilised, in which the first and second order statistics of the errors are computed via sampling. The most common linear approximation is carried out via linear Taylor expansion, which requires the computation of (Fréchet) derivatives of the parameter-to-observable mapping with respect to the parameters of interest. In this paper, we prove that the (approximate) posterior measure obtained by replacing the nonlinear parameter-to-observable mapping with a linear approximation is in fact independent of the choice of the linear approximation when the BAE approach is employed. Thus, somewhat non-intuitively, employing the zero-model as the linear approximation gives the same approximate posterior as any other choice of linear approximations of the parameter-to-observable model. The independence of the linear approximation is demonstrated mathematically and illustrated with two numerical PDE-based problems: an inverse scattering type problem and an inverse conductivity type problem.more » « less
-
The number of non-negative integer matrices with given row and column sums features in a variety of problems in mathematics and statistics but no closed-form expression for it is known, so we rely on approximations. In this paper, we describe a new such approximation, motivated by consideration of the statistics of matrices with non-integer numbers of columns. This estimate can be evaluated in time linear in the size of the matrix and returns results of accuracy as good as or better than existing linear-time approximations across a wide range of settings. We show that the estimate is asymptotically exact in the regime of sparse tables, while empirically performing at least as well as other linear-time estimates in the regime of dense tables. We also use the new estimate as the starting point for an improved numerical method for either counting or sampling matrices with given margins using sequential importance sampling. Code implementing our methods is available.more » « less
-
We propose an algorithm to solve convex and concave fractional programs and their stochastic counterparts in a common framework. Our approach is based on a novel reformulation that involves differences of square terms in the constraints, and subsequent employment of piecewise-linear approximations of the concave terms. Using the branch-and-bound (B\&B) framework, our algorithm adaptively refines the piecewise-linear approximations and iteratively solves convex approximation problems. The convergence analysis provides a bound on the optimality gap as a function of approximation errors. Based on this bound, we prove that the proposed B\&B algorithm terminates in a finite number of iterations and the worst-case bound to obtain an $$\epsilon$$-optimal solution reciprocally depends on the square root of $$\epsilon$$. Numerical experiments on Cobb-Douglas production efficiency and equitable resource allocation problems support that the algorithm efficiently finds a highly accurate solution while significantly outperforming the benchmark algorithms for all the small size problem instances solved. A modified branching strategy that takes the advantage of non-linearity in convex functions further improves the performance. Results are also discussed when solving a dual reformulation and using a cutting surface algorithm to solve distributionally robust counterpart of the Cobb-Douglas example models.more » « less
An official website of the United States government

