skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 18, 2026

Title: To Recommend or Not to Recommend: Designing and Evaluating AI-Enabled Decision Support for Time-Critical Medical Events
AI-enabled decision-support systems aim to help medical providers rapidly make decisions with limited information during medical emergencies. A critical challenge in developing these systems is supporting providers in interpreting the system output to make optimal treatment decisions. In this study, we designed and evaluated an AI-enabled decision-support system to aid providers in treating patients with traumatic injuries. We first conducted user research with physicians to identify and design information types and AI outputs for a decision-support display. We then conducted an online experiment with 35 medical providers from six health systems to evaluate two human-AI interaction strategies: (1) AI information synthesis and (2) AI information and recommendations. We found that providers were more likely to make correct decisions when AI information and recommendations were provided compared to receiving no AI support. We also identified two socio-technical barriers to providing AI recommendations during time-critical medical events: (1) an accuracy-time trade-off in providing recommendations and (2) polarizing perceptions of recommendations between providers. We discuss three implications for developing AI-enabled decision support used in time-critical events, contributing to the limited research on human-AI interaction in this context.  more » « less
Award ID(s):
2107391
PAR ID:
10649441
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
9
Issue:
7
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences. 
    more » « less
  2. Abstract BackgroundIn prehospital emergency care, providers face significant challenges in making informed decisions due to factors such as limited cognitive support, high-stress environments, and lack of experience with certain patient conditions. Effective Clinical Decision Support Systems (CDSS) have great potential to alleviate these challenges. However, such systems have not yet been widely adopted in real-world practice and have been found to cause workflow disruptions and usability issues. Therefore, it is critical to investigate how to design CDSS that meet the needs of prehospital providers while accounting for the unique characteristics of prehospital workflows. MethodsWe conducted semi-structured interviews with 20 prehospital providers recruited from four Emergency Medical Services (EMS) agencies in an urban area in the northeastern U.S. The interviews focused on the decision-making challenges faced by prehospital providers, their technological needs for decision support, and key considerations for the design and implementation of a CDSS that can seamlessly integrate into prehospital care workflows. The data were analyzed using content analysis to identify common themes. ResultsOur qualitative study identified several challenges in prehospital decision-making, including limited access to diagnostic tools, insufficient experience with certain critical patient conditions, and a lack of cognitive support. Participants highlighted several desired features to make CDSS more effective in the dynamic, hands-busy, and cognitively demanding prehospital context, such as automatic prompts for possible patient conditions and treatment options, alerts for critical patient safety events, AI-powered medication identification, and easy retrieval of protocols using hands-free methods (e.g., voice commands). Key considerations for successful CDSS adoption included balancing the frequency and urgency of alerts to reduce alarm fatigue and workflow disruptions, facilitating real-time data collection and documentation to enable decision generation, and ensuring trust and accountability while preventing over-reliance when using CDSS. ConclusionThis study provides empirical insights into the challenges and user needs in prehospital decision-making and offers practical and system design implications for addressing these issues. 
    more » « less
  3. Mahmoud, Ali B. (Ed.)
    Billions of dollars are being invested into developing medical artificial intelligence (AI) systems and yet public opinion of AI in the medical field seems to be mixed. Although high expectations for the future of medical AI do exist in the American public, anxiety and uncertainty about what it can do and how it works is widespread. Continuing evaluation of public opinion on AI in healthcare is necessary to ensure alignment between patient attitudes and the technologies adopted. We conducted a representative-sample survey (total N = 203) to measure the trust of the American public towards medical AI. Primarily, we contrasted preferences for AI and human professionals to be medical decision-makers. Additionally, we measured expectations for the impact and use of medical AI in the future. We present four noteworthy results: (1) The general public strongly prefers human medical professionals make medical decisions, while at the same time believing they are more likely to make culturally biased decisions than AI. (2) The general public is more comfortable with a human reading their medical records than an AI, both now and “100 years from now.” (3) The general public is nearly evenly split between those who would trust their own doctor to use AI and those who would not. (4) Respondents expect AI will improve medical treatment but more so in the distant future than immediately. 
    more » « less
  4. Artificial intelligence (AI) has the potential to improve human decision-making by providing decision recommendations and problem-relevant information to assist human decision-makers. However, the full realization of the potential of human–AI collaboration continues to face several challenges. First, the conditions that support complementarity (i.e., situations in which the performance of a human with AI assistance exceeds the performance of an unassisted human or the AI in isolation) must be understood. This task requires humans to be able to recognize situations in which the AI should be leveraged and to develop new AI systems that can learn to complement the human decision-maker. Second, human mental models of the AI, which contain both expectations of the AI and reliance strategies, must be accurately assessed. Third, the effects of different design choices for human-AI interaction must be understood, including both the timing of AI assistance and the amount of model information that should be presented to the human decision-maker to avoid cognitive overload and ineffective reliance strategies. In response to each of these three challenges, we present an interdisciplinary perspective based on recent empirical and theoretical findings and discuss new research directions. 
    more » « less
  5. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less