skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2026

Title: A thioether‐linked iodinated BODIPY‐benzimidazole photosensitizer: Efficient light‐induced production of singlet oxygen and superoxide radicals and photobiological activity
Abstract A new iodinated BODIPY dye incorporating a thioether‐ has been synthesized and characterized. The benzimidazole unit was introduced at themeso‐pentafluorophenyl position of the BODIPY scaffold via high‐yield click chemistry. This substitution does not alter the strong absorption and emission properties of the BODIPY chromophore and provides a versatile platform for the attachment of pharmacologically important molecules. Further functionalization of the BODIPY core with iodine at the 3‐ and 5‐positions yields a derivative capable of generating reactive oxygen species when irradiated with low energy light. Experimental evidence confirms the production of both singlet oxygen and superoxide radicals, indicating this complex is capable of operating by both Type I and Type II photosensitization pathways. This dual capacity could be responsible for its effectiveness as a photosensitizer and contribute to its photobiological activity against human melanoma cells.  more » « less
Award ID(s):
2400127
PAR ID:
10649732
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Photochemistry and Photobiology
ISSN:
0031-8655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data. 
    more » « less
  2. Abstract Photoinduced electron transfer (PET) in newly assembled dyads formedviametal‐ligand axial coordination of phenylimidazole‐functionalized bis(styryl)BODIPY (BODIPY(Im)2) and zinc tetrapyrroles, that is, zinc tetratolylporphyrin (ZnP), zinc tetra‐t‐butyl phthalocyanine (ZnPc) and zinc tetra‐t‐butyl naphthalocyanine (ZnNc), in non‐coordinatingo‐dichlorobenzene (DCB) is investigated using both steady‐state and time‐resolved transient absorption techniques. The structure of the BODIPY(Im)2was identified by using single crystal X‐ray structural analysis. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational and electrochemical methods. The binding constants measured from optical absorption spectral studies were in the range of ∼104 M−1for the first zinc tetrapyrrole binding and suggested that the two imidazole entities of bis(styryl)BODIPY behave independently in the binding process. The energy level diagram established using spectral and electrochemical studies suggested PET to be thermodynamically unfavorable in the ZnP‐bearing complex while for ZnPc‐ and ZnNc‐bearing complexes such a process is possible when zinc tetrapyrrole is selectively excited. Consequently, occurrence of efficient PET in the latter two dyads was possible to establish from femtosecond transient absorption studies wherein the electron transfer products, that is, the radical cation of zinc tetrapyrrole and the radical anion of BODIPY(Im)2, was possible to spectrally identify. From target analysis of the transient data, time constants of circa 3 ns for ZnPc⋅+:BODIPY⋅and circa 0.5 ns for ZnNc⋅+:BODIPY⋅were obtained indicating persistence of the radical ion‐pair to some extent. The electron acceptor property of bis(styryl)BODIPY in donor‐acceptor conjugates is borne out from the present study. 
    more » « less
  3. Abstract The synthesis and application of a photoactivatable boron‐alkylated BODIPY probe for localization‐based super‐resolution microscopy is reported. Photoactivation and excitation of the probe is achieved by a previously unknown boron‐photodealkylation reaction with a single low‐power visible laser and without requiring the addition of reducing agents or oxygen scavengers in the imaging buffer. These features lead to a versatile probe for localization‐based microscopy of biological systems. The probe can be easily linked to nucleophile‐containing molecules to target specific cellular organelles. By attaching paclitaxel to the photoactivatable BODIPY, in vitro and in vivo super‐resolution imaging of microtubules is demonstrated. This is the first example of single‐molecule localization‐based super‐resolution microscopy using a visible‐light‐activated BODIPY compound as a fluorescent probe. 
    more » « less
  4. A near-IR BODIPY was covalently conjugated via its isothiocyanate groups to one or two Erlotinib molecules, a known tyrosine kinase inhibitor (TKI), via triethylene glycol spacers, to produce two novel BODIPY-monoTKI and BODIPY-diTKI conjugates. The ability of these conjugates to target the intracellular domain of the epidermal growth factor receptor (EGFR) was investigated using molecular modeling, surface plasma resonance (SPR), EGFR kinase binding assay, time-dependent cellular uptake, and fluorescence microscopy. While both the BODIPY-monoTKI and the BODIPY-diTKI conjugates were shown to bind to the EGFR kinase by SPR and accumulated more efficiently within human HEp2 cells that over-express EGFR than BODIPY alone, only the BODIPY-monoTKI exhibited kinase inhibition activity. This is due to the high hydrophobic character and aggregation behavior of the BODIPY-diTKI in aqueous solutions, as shown by fluorescence quenching. Furthermore, the competition of the two Erlotinibs in the diTKI conjugate for the active site of the kinase, as suggested by computational modeling, might lead to a decrease in binding relative to the monoTKI conjugate. Nevertheless, the efficient cellular uptake and intracellular localization of both conjugates with no observed cytotoxicity suggest that both could be used as near-IR fluorescent markers for cells that over-express EGFR. 
    more » « less
  5. ABSTRACT We report the synthesis, photochemical and biological characterization of two new Ru(II) photoactivated complexes based on [Ru(tpy)(Me2bpy)(L)]2+(tpy = 2,2':6',2''‐terpyridine, Me2bpy = 6,6'‐dimethyl‐2,2'‐bipyridine), where L = pyridyl‐BODIPY (pyBOD). Two pyBOD ligands were prepared bearing flanking hydrogen or iodine atoms. Ru(II)‐bound BODIPY dyes show a red‐shift of absorption maxima relative to the free dyes and undergo photodissociation of BODIPY ligands with green light irradiation. Addition of iodine into the BODIPY ligand facilitates intersystem crossing, which leads to efficient singlet oxygen production in the free dye, but also enhances quantum yield of release of the BODIPY ligand from Ru(II). This represents the first report of a strategy to enhance photodissociation quantum yields through the heavy‐atom effect in Ru(II) complexes. Furthermore, Ru(II)‐bound BODIPY dyes display fluorescence turn‐on once released, with a lead analog showing nanomolar EC50values against triple negative breast cancer cells, >100‐fold phototherapeutic indexes under green light irradiation, and higher selectivity toward cancer cells as compared to normal cells than the corresponding free BODIPY photosensitizer. Conventional Ru(II) photoactivated complexes require nonbiorthogonal blue light for activation and rarely show submicromolar potency to achieve cell death. Our study represents an avenue for the improved photochemistry and potency of future Ru(II) complexes. 
    more » « less