Abstract We report a CO(J= 3−2) detection of 23 molecular clouds in the extended ultraviolet (XUV) disk of the spiral galaxy M83 with the Atacama Large Millimeter/submillimeter Array. The observed 1 kpc2region is at about 1.24 times the optical radius (R25) of the disk, where CO(J= 2–1) was previously not detected. The detection and nondetection, as well as the level of star formation (SF) activity in the region, can be explained consistently if the clouds have the mass distribution common among Galactic clouds, such as Orion A—with star-forming dense clumps embedded in thick layers of bulk molecular gas, but in a low-metallicity regime where their outer layers are CO-deficient and CO-dark. The cloud and clump masses, estimated from CO(3−2), range from 8.2 × 102to 2.3 × 104M⊙and from 2.7 × 102to 7.5 × 103M⊙, respectively. The most massive clouds appear similar to Orion A in star formation activity as well as in mass, as expected if the cloud mass structure is common. The overall low SF activity in the XUV disk could be due to the relative shortage of gas in the molecular phase. The clouds are distributed like chains up to 600 pc (or longer) in length, suggesting that the trigger of cloud formation is on large scales. The common cloud mass structure also justifies the use of high-JCO transitions to trace the total gas mass of clouds, or galaxies, even in the high-zuniverse. This study is the first demonstration that CO(3−2) is an efficient tracer of molecular clouds even in low-metallicity environments.
more »
« less
This content will become publicly available on June 30, 2026
High-velocity Molecular Clouds in M83
Abstract High-velocity clouds (HVCs), which are gas clouds moving at high velocity relative to the galactic disk, may play a critical role in galaxy evolution, potentially supplying gas to the disk and triggering star formation. In this study, we focus on the nearby face-on barred spiral galaxy M83, where high-spatial-resolution, high-sensitivity CO(1–0) data are available. We identified molecular clouds and searched for clouds with velocities deviating by more than 50 km s−1from the disk velocity field as HVCs. A total of 10 HVCs were detected—9 redshifted and 1 blueshifted—clearly highlighting an asymmetry in their velocity distribution. These HVCs have radii of 30–80 pc, masses on the order of 105M⊙, and velocity dispersions of 3–20 km s−1, displaying a tendency toward higher velocity dispersion compared to disk molecular clouds in M83. Most of the HVCs do not overlap with the candidates of supernova remnants, and the energy needed to drive HVCs at such high velocities exceeds single supernova energy. Together with the asymmetry in their velocity distribution, we thus conclude that most of the HVCs found in this study are inflow from outside the M83’s disk.
more »
« less
- PAR ID:
- 10649865
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 987
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 69
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of CO(2–1) emission from the circumnuclear disks in two early-type galaxies, NGC 1380 and NGC 6861. The disk in each galaxy is highly inclined (i∼ 75°), and the projected velocities of the molecular gas near the galaxy centers are ∼300 km s−1in NGC 1380 and ∼500 km s−1in NGC 6861. We fit thin disk dynamical models to the ALMA data cubes to constrain the masses of the central black holes (BHs). We created host galaxy models using Hubble Space Telescope images for the extended stellar mass distributions and incorporated a range of plausible central dust extinction values. For NGC 1380, our best-fit model yieldsMBH= 1.47 × 108M⊙with a ∼40% uncertainty. For NGC 6861, the lack of dynamical tracers within the BH’s sphere of influence due to a central hole in the gas distribution precludes a precise measurement ofMBH. However, our model fits require a value forMBHin the range of (1–3) × 109M⊙in NGC 6861 to reproduce the observations. The BH masses are generally consistent with predictions from local BH–host galaxy scaling relations. Systematic uncertainties associated with dust extinction of the host galaxy light and choice of host galaxy mass model dominate the error budget of both measurements. Despite these limitations, the measurements demonstrate ALMA’s ability to provide constraints on BH masses in cases where the BH’s projected radius of influence is marginally resolved or the gas distribution has a central hole.more » « less
-
Abstract We present a catalog of clouds identified from the12CO (1–0) data of M83, which was observed using the Atacama Large Millimeter/submillimeter Array with a spatial resolution of ∼46 pc and a mass sensitivity of ∼104M⊙(3σ). The almost full-disk coverage and high sensitivity of the data allowed us to sample 5724 molecular clouds with a median mass of ∼1.9 × 105M⊙, which is comparable to the most frequently sampled mass of giant molecular clouds by surveys in the Milky Way (MW). About 60% of the total CO luminosity in M83's disk arises from clouds more massive than 106M⊙. Such massive clouds comprise 16% of the total clouds in number and tend to concentrate toward the arm, bar, and center, while smaller clouds are more prevalent in interarm regions. Most >106M⊙clouds have peak brightness temperaturesTpeakabove 2 K with the current resolution. Comparing the observed cloud properties with the scaling relations determined by P. M. Solomon et al. (1987, hereafter S87),Tpeak> 2 K clouds follow the relations, butTpeak< 2 K clouds, which are dominant in number, deviate significantly. Without considering the effect of beam dilution, the deviations would suggest modestly high virial parameters (medianαvir∼ 2.7) and low surface mass densities (median Σ ∼ 22M⊙pc−2) for the entire cloud samples, which are similar to values found for the MW clouds by T. S. Rice et al. (2016) and M.-A Miville-Deschênes et al. (2017). However, once beam dilution is taken into account, the observedαvirand Σ for a majority of the clouds (mostlyTpeak<2 K) can be potentially explained with intrinsic Σ of ∼100M⊙pc−2andαvirof ∼1, which are similar to the clouds of S87.more » « less
-
Abstract We have used the Atacama Large Millimeter/submillimeter Array to map CO(3–2) emission from a galaxy, DLA-B1228g, associated with the high-metallicity damped Lyαabsorber atz≈ 2.1929 toward the QSO PKS B1228–113. At an angular resolution of ≈0.″32 × 0.″24, DLA-B1228g shows extended CO(3–2) emission with a deconvolved size of ≈0.″78 × 0.″18, i.e., a spatial extent of ≈6.4 kpc. We detect extended stellar emission from DLA-B1228g in a Hubble Space Telescope Wide Field Camera 3 F160W image and find that Hαemission is detected in a Very Large Telescope SINFONI image from only one side of the galaxy. While the clumpy nature of the F160W emission and the offset between the kinematic and physical centers of the CO(3–2) emission are consistent with a merger scenario, this appears unlikely due to the lack of strong Hαemission, the symmetric double-peaked CO(3–2) line profile, the high molecular gas depletion timescale, and the similar velocity dispersions in the two halves of the CO(3–2) image. Kinematic modeling reveals that the CO(3–2) emission is consistent with arising from an axisymmetric rotating disk with an exponential profile, a rotation velocity ofvrot= 328 ± 7 km s−1, and a velocity dispersion ofσv= 62 ± 7 km s−1. The high value of the ratiovrot/σv, ≈5.3, implies that DLA-B1228g is a rotation-dominated cold disk galaxy, the second case of a high-zHi-absorption-selected galaxy identified with a cold rotating disk. We obtain a dynamical mass ofMdyn= (1.5 ± 0.1) × 1011M⊙, similar to the molecular gas mass of ≈1011M⊙inferred from earlier CO(1–0) studies; this implies that the galaxy is baryon-dominated in its inner regions.more » « less
-
Abstract A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral indexα≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO2and exhibits a line width FWHM ≈ 160 km s−1. The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲104au at the distance of the Galactic center, GC). The centroid velocity isvLSR≈ 40–50 km s−1, which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature isTLTE= 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s−1) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object.more » « less
An official website of the United States government
