skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2027

Title: Elementary abelian Sylow subgroups of the multiplicative group
Erd\H{o}s and Pomerance have shown that $$\varphi(n)$$ typically has about $$\frac{1}{2}(\log\log{n})^2$$ distinct prime factors. More precisely, $$\omega(\varphi(n))$$ has normal order $$\frac{1}{2}(\log\log{n})^2$$. Since $$\varphi(n)$$ is the size of the multiplicative group $$(\Z/n\Z)^{\times}$$, this result also gives the normal number of Sylow subgroups of $$(\Z/n\Z)^{\times}$$. Recently, Pollack considered specifically noncyclic Sylow subgroups of $$(\Z/n\Z)^{\times}$$, showing that the count of those has normal order $$\log\log{n}/\log\log\log{n}$$. We prove that the count of noncyclic Sylow subgroups that are elementary abelian of a fixed rank $$k\ge 2$$ has normal order $$\frac{1}{k(k-1)} \log\log{n}/\log\log\log{n}$$. So for example, (typically) among the primes $$p$$ for which the $$p$$-primary component of $$(\Z/n\Z)^{\times}$$ is noncyclic, this component is $$\Z/p\Z \oplus \Z/p\Z$$ about half the time. Additionally, we show that the count of $$p$$ for which the $$p$$-Sylow subgroup of $$(\Z/n\Z)^{\times}$$ is not elementary abelian has normal order $$2\sqrt{\pi} \sqrt{\log\log{n}}/\log\log\log{n}$$.  more » « less
Award ID(s):
2316986
PAR ID:
10649934
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Number Theory
Volume:
281
Issue:
C
ISSN:
0022-314X
Page Range / eLocation ID:
205 to 223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $$2$$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G , then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems. 
    more » « less
  2. Abstract We present a new elementary algorithm that takes $$ \textrm{time} \ \ O_\epsilon \left( x^{\frac{3}{5}} (\log x)^{\frac{8}{5}+\epsilon } \right) \ \ \textrm{and} \ \textrm{space} \ \ O\left( x^{\frac{3}{10}} (\log x)^{\frac{13}{10}} \right) $$ time O ϵ x 3 5 ( log x ) 8 5 + ϵ and space O x 3 10 ( log x ) 13 10 (measured bitwise) for computing $$M(x) = \sum _{n \le x} \mu (n),$$ M ( x ) = ∑ n ≤ x μ ( n ) , where $$\mu (n)$$ μ ( n ) is the Möbius function. This is the first improvement in the exponent of x for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to $$O(x^{1/5} (\log x)^{5/3})$$ O ( x 1 / 5 ( log x ) 5 / 3 ) by the use of (Helfgott in: Math Comput 89:333–350, 2020), at the cost of letting time rise to the order of $$x^{3/5} (\log x)^2 \log \log x$$ x 3 / 5 ( log x ) 2 log log x . 
    more » « less
  3. Abstract The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that if G is a countable discrete abelian group and $$\varphi , \psi : G \to G$$ are homomorphisms, such that at least two of the three subgroups $$\varphi (G)$$ , $$\psi (G)$$ and $$(\psi -\varphi )(G)$$ have finite index in G , then $$\{\varphi , \psi \}$$ has the large intersections property . That is, for any ergodic measure preserving system $$\textbf {X}=(X,\mathcal {X},\mu ,(T_g)_{g\in G})$$ , any $$A\in \mathcal {X}$$ and any $$\varepsilon>0$$ , the set $$ \begin{align*} \{g\in G : \mu(A\cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A)>\mu(A)^3-\varepsilon\} \end{align*} $$ is syndetic (Theorem 1.11). Moreover, in the special case where $$\varphi (g)=ag$$ and $$\psi (g)=bg$$ for $$a,b\in \mathbb {Z}$$ , we show that we only need one of the groups $aG$ , $bG$ or $(b-a)G$ to be of finite index in G (Theorem 1.13), and we show that the property fails, in general, if all three groups are of infinite index (Theorem 1.14). One particularly interesting case is where $$G=(\mathbb {Q}_{>0},\cdot )$$ and $$\varphi (g)=g$$ , $$\psi (g)=g^2$$ , which leads to a multiplicative version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms $$\varphi ,\psi $$ that have the large intersections property when $$G = {{\mathbb Z}}^2$$ . The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the multiple ergodic averages $$ \begin{align*} \frac{1}{|\Phi_N|} \sum_{g\in \Phi_N}T_{\varphi(g)}f_1\cdot T_{\psi(g)} f_2. \end{align*} $$ In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor . In this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by passing to an extension of $$\textbf {X}$$ , one can describe the characteristic factor in terms of the Conze–Lesigne factor and the $$\sigma $$ -algebras of $$\varphi (G)$$ and $$\psi (G)$$ invariant functions (Theorem 4.10). 
    more » « less
  4. Abstract Given a hereditary property of graphs $$\mathcal{H}$$ and a $$p\in [0,1]$$ , the edit distance function $$\textrm{ed}_{\mathcal{H}}(p)$$ is asymptotically the maximum proportion of edge additions plus edge deletions applied to a graph of edge density p sufficient to ensure that the resulting graph satisfies $$\mathcal{H}$$ . The edit distance function is directly related to other well-studied quantities such as the speed function for $$\mathcal{H}$$ and the $$\mathcal{H}$$ -chromatic number of a random graph. Let $$\mathcal{H}$$ be the property of forbidding an Erdős–Rényi random graph $$F\sim \mathbb{G}(n_0,p_0)$$ , and let $$\varphi$$ represent the golden ratio. In this paper, we show that if $$p_0\in [1-1/\varphi,1/\varphi]$$ , then a.a.s. as $$n_0\to\infty$$ , \begin{align*} {\textrm{ed}}_{\mathcal{H}}(p) = (1+o(1))\,\frac{2\log n_0}{n_0} \cdot\min\left\{ \frac{p}{-\log(1-p_0)}, \frac{1-p}{-\log p_0} \right\}. \end{align*} Moreover, this holds for $$p\in [1/3,2/3]$$ for any $$p_0\in (0,1)$$ . A primary tool in the proof is the categorization of p -core coloured regularity graphs in the range $$p\in[1-1/\varphi,1/\varphi]$$ . Such coloured regularity graphs must have the property that the non-grey edges form vertex-disjoint cliques. 
    more » « less
  5. Abstract Let$$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$$be integral linear combinations of elementary symmetric polynomials with$$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$$, where$$1\le k_1<\cdots . Subject to the condition$$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$$, we show that there is a paucity of nondiagonal solutions to the Diophantine system$$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$$. 
    more » « less