skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Solving partial differential equations in participating media
We consider the problem of solving partial differential equations (PDEs) in domains with complex microparticle geometry that is impractical, or intractable, to model explicitly. Drawing inspiration from volume rendering, we propose tackling this problem by treating the domain as a participating medium that models microparticle geometrystochastically, through aggregate statistical properties (e.g., particle density). We first introduce the problem setting of PDE simulation in participating media. We then specialize toexponential mediaand describe the properties that make them an attractive model of microparticle geometry for PDE simulation problems. We use these properties to develop two new algorithms,volumetric walk on spheresandvolumetric walk on stars, that generalize previous Monte Carlo algorithms to enable efficient and discretization-free simulation of linear elliptic PDEs (e.g., Laplace) in participating media. We demonstrate experimentally that our algorithms can solve Laplace boundary value problems with complex microparticle geometry more accurately and more efficiently than previous approaches, such as ensemble averaging and homogenization.  more » « less
Award ID(s):
2212290
PAR ID:
10650039
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
44
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Partial differential equations (PDEs) with spatially varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem---leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend thewalk on spheres (WoS)algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired bynull-scatteringyields unbiased Monte Carlo estimators for a large class of 2nd order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. 
    more » « less
  2. We introduce a Monte Carlo method for computing derivatives of the solution to a partial differential equation (PDE) with respect to problem parameters (such as domain geometry or boundary conditions). Derivatives can be evaluated at arbitrary points, without performing a global solve or constructing a volumetric grid or mesh. The method is hence well suited to inverse problems with complex geometry, such as PDE-constrained shape optimization. Like otherwalk on spheres (WoS)algorithms, our method is trivial to parallelize, and is agnostic to boundary representation (meshes, splines, implicit surfaces,etc.), supporting large topological changes. We focus in particular on screened Poisson equations, which model diverse problems from scientific and geometric computing. As in differentiable rendering, we jointly estimate derivatives with respect to all parameters---hence, cost does not grow significantly with parameter count. In practice, even noisy derivative estimates exhibit fast, stable convergence for stochastic gradient-based optimization, as we show through examples from thermal design, shape from diffusion, and computer graphics. 
    more » « less
  3. This 3 hour course provides a detailed overview of grid-free Monte Carlo methods for solving partial differential equations (PDEs) based on the walk on spheres (WoS) algorithm, with a special emphasis on problems with high geometric complexity. PDEs are a basic building block of models and algorithms used throughout science, engineering and visual computing. Yet despite decades of research, conventional PDE solvers struggle to capture the immense geometric complexity of the natural world. A perennial challenge is spatial discretization: traditionally, one must partition the domain into a high-quality volumetric mesh—a process that can be brittle, memory intensive, and difficult to parallelize. WoS makes a radical departure from this approach, by reformulating the problem in terms of recursive integral equations that can be estimated using the Monte Carlo method, eliminating the need for spatial discretization. Since these equations strongly resemble those found in light transport theory, one can leverage deep knowledge from Monte Carlo rendering to develop new PDE solvers that share many of its advantages: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. The course is divided into two parts. Part I will cover the basics of using WoS to solve fundamental PDEs like the Poisson equation. Topics include formulating the solution as an integral equation, generating samples via recursive random walks, and employing accelerated distance and ray intersection queries to efficiently handle complex geometries. Participants will also gain experience setting up demo applications involving data interpolation, heat transfer, and geometric optimization using the open-source “Zombie” library, which implements various grid-free Monte Carlo PDE solvers. Part II will feature a mini-panel of academic and industry contributors covering advanced topics including variance reduction, differentiable and multi-physics simulation, and applications in industrial design and robust geometry processing. 
    more » « less
  4. We introduce a Monte Carlo method for computing derivatives of the solution to a partial differential equation (PDE) with respect to problem parameters (such as domain geometry or boundary conditions). Derivatives can be evaluated at arbitrary points, without performing a global solve or constructing a volumetric grid or mesh. The method is hence well suited to inverse problems with complex geometry, such as PDE-constrained shape optimization. Like other walk on spheres (WoS) algorithms, our method is trivial to parallelize, and is agnostic to boundary representation (meshes, splines, implicit surfaces, etc.), supporting large topological changes. We focus in particular on screened Poisson equations, which model diverse problems from scientific and geometric computing. As in differentiable rendering, we jointly estimate derivatives with respect to all parameters—hence, cost does not grow significantly with parameter count. In practice, even noisy derivative estimates exhibit fast, stable convergence for stochastic gradient-based optimization, as we show through examples from thermal design, shape from diffusion, and computer graphics. 
    more » « less
  5. Many geometry processing techniques require the solution of partial differential equations (PDEs) on manifolds embedded in\(\mathbb {R}^2 \)or\(\mathbb {R}^3 \), such as curves or surfaces. Suchmanifold PDEsoften involve boundary conditions (e.g., Dirichlet or Neumann) prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold. However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite element-type techniques or derive specialized discretization procedures for each distinct manifold representation. We propose instead to address such problems in a unified manner through a novel extension of theclosest point method(CPM) to handle interior boundary conditions. CPM solves the manifold PDE by solving a volumetric PDE defined over the Cartesian embedding space containing the manifold, and requires only a closest point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding space across interior boundaries. CPM’s finite difference and interpolation stencils are adapted to respect this partition while preserving second-order accuracy. Additionally, we develop an efficient sparse-grid implementation and numerical solver that can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: diffusion curves on surfaces, geodesic distance, tangent vector field design, harmonic map construction, and reaction-diffusion textures. Our proposed approach thus offers a powerful and flexible new tool for a range of geometry processing tasks on general manifold representations. 
    more » « less