There have recently been calls to consider the development of student empathy within engineering coursework. We argue that this goal may be reached by infusing more traditional engineering coursework with humanities. Our Humanities-Driven Science, Technology, Engineering, and Mathematics (HDSTEM) curriculum uses a humanities format as a context to discuss science and engineering advancement. The foundation of an HDSTEM curriculum is that it would reassert the importance of humans and human impact in science and engineering, while recognizing the social, political, and cultural catalysts and outcomes of technological innovation. Therefore, we hypothesize that through an HDSTEM curriculum, students will not only develop technically accurate solutions to problems posed in an engineering curriculum but will also question their ideas' impact on society. For this project, we draw on the case of an HDSTEM course, “World War II and Technology,” taught at Texas Tech University (TTU) and Rochester Institute of Technology (RIT). Specifically, we will present the analysis of linking specific problem-solving exercises and assignments that embed empathy with the delivery of the courses following an HDSTEM instruction modality. The problem-solving exercises and assignments incorporate the traditional Six Sigma define, measure, analyze, implement, and control (DMAIC) process. In these assignments, students were asked to reverse engineer technical, scientific, and logistical problems seen during World War II. In a more straightforward means to elicit empathy, students were assigned an additional empathize step with the DMAIC (EDMAIC) during two of these assignments. The empathize step was generic, asking students to take the perspective of the creators, users, and others affected by the problem and consider the societal needs and constraints of the time. Students completed four of these assignments (2 DMAICs bookending 2 (EDMAICs) throughout the course. Combining HDSTEM instruction modality and empathy problem-solving assignments, preliminary discourse analysis of assignments, which looks deeply at the language students used to create empathetic dispositions/identities within their work, revealed that students integrated empathy into technology design at various levels at both TTU and RIT. These disposition levels in empathy were observed and subjectively quantified using common rubrics. These outcomes result even from delivery at pre- and post-pandemic timeframes and at two institutions (i.e., the course was offered at TTU in the fall of 2019 and at RIT in the fall of 2022). In this consideration, the HDSTEM curriculum and empathy-embedded assignments have shown a cultivation of empathetic disposition among students. Further, based on these differing implementations, we will also present and comment on the experience of implementing the TTU course treatment at a new institution, RIT, to serve as a protocol in the future. These courses will be offered again in the fall of 2023 year to offer a comprehensive comparison between first-time (or one-off) in contrast to a sustained delivery of an HDSTEM curriculum.
more »
« less
This content will become publicly available on June 3, 2026
Peachy Parallel Assignments (EduPar 2025)
Not AvailablePeachy Parallel Assignments are assignments on parallel computing topics that have been tested in a classroom, are designed for easy adoption by others, and are “cool and inspirational” for students. They are published so that others can benefit from the authors’ assignment-creation work, raising the overall quality of assignments given in our area while also saving instructors time. The assignments are selected competitively at the Edu* workshops. This article presents two assignments selected for presentation at EduPar 2025: one that has students use the MapReduce framework to resize images using the 2D discrete Fourier transform and one that has them parallelize an agent-based model to simulate a zombie outbreak.
more »
« less
- Award ID(s):
- 2322084
- PAR ID:
- 10650042
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 692 to 696
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper describes an innovative graduate course in agricultural economics that has evolved over the past decade and attracts students from across the Purdue University campus. Its novel combination of guest lectures on key sustainability topics, and intensive, computer-based lab assignments with the SIMPLE model of global food and environmental security, prepares students to undertake innovative projects. These independent projects are presented to the class, written up, and submitted in lieu of a final exam. The topics covered are quite diverse and range from the impacts of women empowerment on food security, to the consequences of heat stress on farm workers, and the impact of reducing food waste. The course has spawned two dozen published journal articles, inspired MS and PhD theses, and facilitated a number of important interdisciplinary projects. The complete syllabus, lab assignments, and detailed course design are made available for others to use and adapt to their own circumstances. Future versions of the course will seek to incorporate explicitly spatial analysis of agriculture, land, water, and environmental quality outcomes.more » « less
-
Many universities are offering data science (DS) courses to fulfill the growing demands for skilled DS practitioners. Assignments and projects are essential parts of the DS curriculum as they enable students to gain hands-on experience in real-world DS tasks. However, most current assignments and projects are lacking in at least one of two ways: 1) they do not comprehensively teach all the steps involved in the complete workflow of DS projects; 2) students work on separate problems individually or in small teams, limiting the scale and impact of their solutions. To overcome these limitations, we envision novel synergistic modular assignments where a large number of students work collectively on all the tasks required to develop a large-scale DS product. The resulting product can be continuously improved with students' contributions every semester. We report our experience with developing and deploying such an assignment in an Information Retrieval course. Through the assignment, students collectively developed a search engine for finding expert faculty specializing in a given field. This shows the utility of such assignments both for teaching useful DS skills and driving innovation and research. We share useful lessons for other instructors to adopt similar assignments for their DS courses.more » « less
-
Researchers have looked into ways to make computer science assignments more engaging, practical, and beneficial to students to improve learning outcomes by increasing student appeal. Offering a pool of assignments and allowing students to choose their preferred assignments is considered as a potential method for improving learning outcomes. In this paper, we investigate the effect of context choice for assignments in an object-oriented programming course that covers various topics such as object-oriented programming concepts, database design and implementation, graphical user interface design, and web application development. Students complete three immersive simulation-based learning (ISBL) modules as course assignments. ISBL modules involve technology-enhanced problem-based learning where the problem context is represented via a three-dimensional (3D), animated discrete-event simulation model that resembles a real-world system or context, in this case, we have three simulated systems/contexts around which ISBL assignments are defined: an airport, a manufacturing system, and a hospital emergency department. The research experiments involve four groups: (1) students with no choice who use the same assigned simulated system for all three ISBL assignments; (2) students with no choice who are given a different simulated system for each ISBL assignment; (3) students who can choose their preferred simulated system at the beginning but cannot change their choice for future assignments; and, (4) students who can choose at the beginning and switch between the three simulated systems for subsequent assignments. Data are collected over multiple semesters and statistical analyses are conducted to compare the four groups in terms of motivation, experiential learning, and self assessment of learning. We also conduct qualitative assessments in the form of interviews to support and explain our statistical results.more » « less
-
Assignments based on meaningful real-world contexts have been shown to be valuable in introductory computing education. However, it can be difficult to distinguish the value of a broad context from the value of a particular instantiation of that context. In this work in progress, we report on our initial findings gathered from deployments of different pencil-puzzle-based assignments. Specifically, we have investigated the use of pencil puzzles as a contextual domain, working with instructors at eight institutions to deliver assignments appropriate to their situation and aligning with their existing materials. We then evaluate the assignments using student grades and survey responses regarding student perceptions of the assignments including self-assessed learning, given a wide array of demographic variables. Our initial results show that while there was some dependency of student responses on their prior programming experience, and female students’ feedback were more positive about one aspect, overall these types of assignments do not appear to put particular groups of students at a strong (dis)advantage.more » « less
An official website of the United States government
