Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin–sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S–C bonds at olefinic sites, whereas the reaction at 230 °C would produce C–S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements.
more »
« less
This content will become publicly available on February 15, 2026
Thermal and Mechanical Properties of Lignin Derivative–Sulfur Composites
ABSTRACT Lignin, comprising 20%–35% of lignocellulosic biomass, is the second most abundant biopolymer after cellulose. As the bioethanol industry expands, the accumulation of lignin by‐products necessitates innovative valorization strategies. This study explores the synthesis and characterization of lignin‐derived composites. Specifically, the reaction of 20 wt. % lignin‐derived guaiacol or syringol with 80 wt. % elemental sulfur gives composites GS80and SS80, respectively. The chemical structures of composites were elucidated using GC–MS,1H NMR, and UV–Vis spectroscopy, revealing the formation of both SCaryland SCalkylbonds. Thermal and morphological analysis (via TGA, DSC, PXRD, and SEM‐EDS) indicated SS80has higher crystallinity and thermal stability than GS80, attributed to a higher degree of crosslinking and a greater content of dark sulfur. Mechanical testing showed SS80exhibits superior compressional and flexural strengths, and enhanced Young's modulus and Shore hardness, compared to GS80. Notably, the mechanical strength parameters for SS80are comparable to those of C62 class bricks used in construction applications. These findings suggest that lignin‐derived composites, particularly those incorporating syringol, can provide viable alternatives to traditional materials in various applications, contributing to both waste valorization and sustainable materials science.
more »
« less
- Award ID(s):
- 2203669
- PAR ID:
- 10650095
- Publisher / Repository:
- wiley
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 63
- Issue:
- 4
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- 789 to 799
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Herein high-strength composites are prepared from elemental sulfur, sunflower oil, and wastewater sludge. Fats extracted from dissolved air flotation (DAF) solids were reacted with elemental sulfur to yield compositeDAFS(10 wt% DAF fats and 90 wt% sulfur). Additional composites were prepared from DAF fat, sunflower oil and sulfur to giveSunDAFx(x = wt% sulfur, varied from 85–90%). The composites were characterized by spectroscopic, thermal, and mechanical methods. FT-IR spectra revealed a notable peak at 798 cm–1indicating a C–S stretch inDAFS,SunDAF90, andSunDAF85indicating successful crosslinking of polymeric sulfur with olefin units. SEM/EDX analysis revealed homogenous distribution of carbon, oxygen, and sulfur inSunDAF90andSunDAF85. The percent crystallinity exhibited byDAFS(37%),SunDAF90(39%), andSunDAF85(45%) was observed to be slightly lower than that of previous composites prepared from elemental sulfur and fats and oils.DAFSandSunDAFxdisplayed compressive strengths (26.4–38.7 MPa) of up to 227% above that required (17 MPa) of ordinary Portland cement for residential building foundations. The composite decomposition temperatures ranged from 211 to 219 °C, with glass transition temperatures of − 37 °C to − 39 °C. These composites thus provide a potential route to reclaim wastewater organics for use in value-added structural materials having mechanical properties competitive with those of commercial products.more » « less
-
Abstract The use of γ‐Al2O3‐supported Ni catalysts promoted with either Cu or Fe was investigated for the reductive catalytic fractionation (RCF) of hybrid poplar in methanol at 200 and 250 °C. The effectiveness of lignin depolymerization was quantified in terms of the lignin oil production, the quantity and distribution of identifiable monomers present in the lignin oil, and the yield of residual solids. All of the Ni‐based catalysts tested provided improved yields of lignin oil and monomers, along with reduced char formation, relative to blank (sans catalyst) runs. The highest monomer yield of 51 % was obtained at 250 °C over a 20 wt.% Ni‐5 wt.% Cu/Al2O3catalyst, the improved performance obtained through Cu promotion being attributed to the ability of Cu to facilitate NiO reduction, resulting in an increased amount of Ni0on the catalyst surface and, consequently, improved hydrogenation activity. The main monomers formed were propanol‐, propyl‐ and propenyl‐substituted guaiacol and syringol, the S/G ratio of the products corresponding closely to that in the native lignin.more » « less
-
null (Ed.)Lignocellulosic biomass holds a tremendous opportunity for transformation into carbon-negative materials, yet the expense of separating biomass into its cellulose and lignin components remains a primary economic barrier to biomass utilization. Herein is reported a simple procedure to convert several biomass-derived materials into robust, recyclable composites through their reaction with elemental sulfur by inverse vulcanization, a process in which olefins are crosslinked by sulfur chains. In an effort to understand the chemistry and the parameters leading to the strength of these composites, sulfur was reacted with four biomass-derivative comonomers: (1) unmodified peanut shell powder, (2) allyl peanut shells, (3) ‘mock’ allyl peanut shells (a mixture containing independently-prepared allyl cellulose and allyl lignin), or (4) peanut shells that have been defatted by extraction of peanut oil. The reactions of these materials with sulfur produce the biomass–sulfur composites PSx , APSx , mAPSx and dfPSx , respectively, where x = wt% sulfur in the monomer feed. The influence of biomass : sulfur ratio was assessed for PSx and APSx . Thermal/mechanical properties of composites were evaluated for comparison to commercial materials. Remarkably, unmodified peanut shell flour can simply be heated with elemental sulfur to produce composites having flexural/compressive strengths exceeding those of Portland cement, an effect traced to the presence of olefin-bearing peanut oil in the peanut shells. When allylated peanut shells are used in this process, a composite having twice the compressive strength of Portland cement is attained.more » « less
-
Lignin is the second-most abundant biopolymer in nature and remains a severely underutilized waste product of agriculture and paper production. Sulfur is the most underutilized byproduct of petroleum and natural gas processing industries. On their own, both sulfur and lignin exhibit very poor mechanical properties. In the current work, a strategy for preparing more durable composites of sulfur and lignin, LSx , is described. Composites LSx were prepared by reaction of allyl lignin with elemental sulfur, whereby some of the sulfur forms polysulfide crosslinks with lignin to yield a three-dimensional network. Even relatively small quantities (<5 wt%) of the polysulfide-crosslinked lignin network provides up to a 3.4-fold increase in mechanical reinforcement over sulfur alone, as measured by the storage moduli and flexural strength determined from dynamic mechanical analysis (temperature dependence and stress–strain analysis). Notably, LSx composites could be repeatedly remelted and recast after pulverization without loss of mechanical strength. These initial studies suggest potential practical applications of lignin and sulfur waste streams in the ongoing quest towards more sustainable, recyclable structural materials.more » « less
An official website of the United States government
