Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to biases when gap-filling and scaling up observations to determine regional carbon budgets. Tundra ecosystems are heterogeneous at multiple scales. Plant functional types, soil moisture, thaw depth, and microtopography, for example, vary across the landscape and influence net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming temperatures, Arctic ecosystems are changing from a net sink to a net source of carbon to the atmosphere in some locations, but the Arctic's carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes from an eddy covariance tower in the Yukon–Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov chain Monte Carlo (MCMC) methods to unmix eddy covariance observations into constituent land-cover fluxes based on high-resolution land-cover maps of the region. We compared three types of footprint models and used two land-cover maps with varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used artificially created gaps of withheld observations to compare gap-filling performance using our derived land-cover-specific fluxes and traditional gap-filling methods that assume homogeneous landscapes. We also compared resulting regional carbon budgets when scaling up observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods performed worse at predicting artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes, while there were only slight differences between footprint models and land-cover maps. We identified and quantified hot spots of carbon fluxes in the landscape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct seasonality in tundra growing season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing season CO2 sink by a factor of 2 and underestimated CH4 emissions by a factor of 2 when compared to scaling with any method that accounts for landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high-resolution land-cover maps can be leveraged to derive detailed land-cover carbon fluxes from eddy covariance time series. These results demonstrate the importance of landscape heterogeneity when scaling carbon emissions across the Arctic.
more »
« less
High-Resolution Mapping of Soil Organic Carbon Under Different Land-Use Types Using NEON Remote Sensing Data.
Soil organic carbon (SOC) represents the largest terrestrial carbon pool. Effectively monitoring SOC at high spatial resolution is crucial for estimating carbon budgets at the ecosystem scale and informing climate change mitigation efforts at the regional scale. Traditional soil sampling methods, however, are laborious and expensive. Remote sensing platforms can be used to survey large landscapes to meet the need for rapid and cost-effective approaches for quantifying SOC at landscape to regional scales, if relationships between remotely sensed variables and SOC can be established. We developed a workflow to analyze and predict SOC content based on National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) remote sensing data. First, we benchmarked related tools and developed reproducible workflows using NEON remote sensing datasets. Hyperspectral data were extracted from the locations where NEON soil data exist. Additional variables from the LiDAR data and key metadata (climate and land cover) were extracted for those locations. Random Forest and Partial Least Squares Regression techniques were then used to create models for fine-scale SOC prediction. Cross-validation was embedded in the model creation step. The most important covariates were selected through recursive feature elimination, stepwise selection, and expert judgment. Preliminary results indicate that machine learning models can re-produce SOC measurements in testing datasets. Key predictors include topographic variables, vegetation indices, and specific wavelength bands in hyperspectral images. We are further validating our algorithms using SOC data from ISCN (International Soil Carbon Network) and SoDaH (SOils DAta Harmonization database) that are co-located with NEON sites. We are creating high-resolution SOC maps for 0-30 cm depth at NEON sites and testing our algorithms for different land use types. Our work paves the way for a broader assessment of SOC stocks using remote sensing observations, and our high-resolution SOC maps will potentially help quantify carbon budgets across heterogeneous landscapes.
more »
« less
- Award ID(s):
- 2448419
- PAR ID:
- 10650145
- Publisher / Repository:
- ASA, CSSA, SSSA International Annual Meeting, San Antonio, TX. https://scisoc.confex.com/scisoc/2024am/meetingapp.cgi/Paper/160215
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The rarity of rapid campaigns to characterize soils across scales limits opportunities to investigate variation in soil carbon stocks (SOC) storage simultaneously at large and small scales, with and without site-level replication. We used data from two complementary campaigns at 40 sites in the United States across the National Ecological Observatory Network (NEON), in which one campaign sampled profiles from closely co-located intensive plots and physically composited similar horizons, and the other sampled dozens of pedons across the landscape at each site. We demonstrate some consistencies between these distinct designs, while also revealing that within-site replication reveals patterns and predictors of SOC stocks not detectable with non-replicated designs. Both designs demonstrate that SOC stocks of whole soil profiles vary across continental-scale climate gradients. However, broad climate patterns may mask the importance of localized variation in soil physicochemical properties, as captured by within-site sampling, especially for SOC stocks of discrete genetic horizons. Within-site replication also reveals examples in which expectations based on readily explained continental-scale patterns do not hold. For example, even wide-ranging drainage class sequences within landscapes do not duplicate the clear differences in profile SOC stocks across drainage classes at the continental scale, and physicochemical factors associated with increasing B horizon SOC stocks at continental scales frequently do not follow the same patterns within landscapes. Because inferences from SOC studies are a product of their context (where, when, how), this study provides context—in terms of SOC stocks and the factors that influence them—for others assessing soils and the C cycle at NEON sites.more » « less
-
Tidal wetlands, widely considered the most extensive reservoir of soil organic carbon (SOC), can benefit from remote sensing studies enabling spatiotemporal estimation and mapping of SOC stock. We found that a majority of the remote-sensing-based SOC mapping efforts have been focused on upland ecosystems, not on tidal wetlands. We present a comprehensive review detailing the types of remote sensing models and methods used, standard input variables, results, and limitations for the handful of studies on tidal wetland SOC. Based on that synthesis, we pose several unexplored research questions and methods that are critical for moving tidal wetland SOC science forward. Among these, the applicability of machine learning and deep learning models for predicting surface SOC and the modeling requirements for SOC in subsurface soils (soils without a remote sensing signal, i.e., a soil depth greater than 5 cm) are the most important. We did not find any remote sensing study aimed at modeling subsurface SOC in tidal wetlands. Since tidal wetlands store a significant amount of SOC at greater depths, we hypothesized that surface SOC could be an important covariable along with other biophysical and climate variables for predicting subsurface SOC. Preliminary results using field data from tidal wetlands in the southeastern United States and machine learning model output from mangrove ecosystems in India revealed a strong nonlinear but significant relationship (r2 = 0.68 and 0.20, respectively, p < 2.2 × 10−16 for both) between surface and subsurface SOC at different depths. We investigated the applicability of the Soil Survey Geographic Database (SSURGO) for tidal wetlands by comparing the data with SOC data from the Smithsonian’s Coastal Blue Carbon Network collected during the same decade and found that the SSURGO data consistently over-reported SOC stock in tidal wetlands. We concluded that a novel machine learning framework that utilizes remote sensing data and derived products, the standard covariables reported in the limited literature, and more importantly, other new and potentially informative covariables specific to tidal wetlands such as tidal inundation frequency and height, vegetation species, and soil algal biomass could improve remote-sensing-based tidal wetland SOC studies.more » « less
-
Assessing soil organic carbon (SOC) stocks is crucial for understanding the carbon sequestration potential of agroecosystems and for mitigating climate change. This study presents a novel method for assessing SOC and mineral content at various soil depths in sorghum crops using hyperspectral remote sensing. Conducted at Planthaven Farms, MO, the research encompassed ten genotypes across 30 plots, yielding 180 soil samples from six depth intervals (0–150 cm) of bare soil. Chemical analyses determined the SOC and mineral levels, which were then compared to spectral data from HySpex indoor sensors. We utilized time-frequency analysis methods, including discrete wavelet transformation (DWT), continuous wavelet transformation (CWT), and frame transformation along with traditional spectral transformations, specifically fractional derivatives and continuum removal. The analysis revealed the shortwave infrared (SWIR) region, particularly the 1800–2000 nm range, as having the strongest correlations with SOC content (with R2 exceeding 0.8). The visible near-infrared (VNIR) region also provided valuable insights. Models incorporating CWT achieved high accuracy (test R2 exceeding 0.9), while frame transformation achieved strong accuracy (test R2 between 0.7 and 0.8) with fewer features. The random forest regressor (RFR) proved to be most robust, demonstrating superior accuracy and reduced overfitting compared to support vector regression (SVR), partial least squares regression (PLSR), and deep neural network (DNN) models. The models demonstrated the efficacy of hyperspectral data for SOC estimation, suggesting potential for future applications that integrate this data with above-ground biomass to improve SOC mapping across larger scales. This research offers a promising spectral transformation approach for effective carbon management and sustainable agriculture in a changing climate.more » « less
-
Key Points The NEON sites were estimated to have large soil organic carbon (SOC) loss in both topsoil and subsoil during 1984–2014 The carbon sequestration potential is limited in well‐developed and near carbon‐saturated soils in managed ecosystems Runoff/erosion and leaching, vertical translocation, and mineral sorption are dominant factors affecting SOC variation at National Ecological Observatory Network sitesmore » « less
An official website of the United States government

