skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Normalized Conformal Prediction and Uncertainty Quantification for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests
Deep learning models are being adopted and applied across various critical medical tasks, yet they are primarily trained to provide point predictions without providing degrees of confidence. Medical practitioner’s trustworthiness of deep learning models is increased when paired with uncertainty estimations. Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals, allowing for a view of the model’s uncertainty. However, popular uncertainty estimation methods for conformal prediction fail to provide highly accurate heteroskedastic intervals. In this paper, we propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest. We show that the deep regression forest variance improves the efficiency and coverage of normalized inductive conformal prediction when applied on an anti-cancer drug sensitivity prediction task.  more » « less
Award ID(s):
2007903
PAR ID:
10650190
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Conformal predictions transform a measurable, heuristic notion of uncertainty into statistically valid confidence intervals such that, for a future sample, the true class prediction will be included in the conformal prediction set at a predetermined confidence. In a Bayesian perspective, common estimates of uncertainty in multivariate classification, namelyp‐values, only provide the probability that the data fits the presumed class model,P(D|M). Conformal predictions, on the other hand, address the more meaningful probability that a model fits the data,P(M|D). Herein, two methods to perform inductive conformal predictions are investigated—the traditional Split Conformal Prediction that uses an external calibration set and a novel Bagged Conformal Prediction, closely related to Cross Conformal Predictions, that utilizes bagging to calibrate the heuristic notions of uncertainty. Methods for preprocessing the conformal prediction scores to improve performance are discussed and investigated. These conformal prediction strategies are applied to identifying four non‐steroidal anti‐inflammatory drugs (NSAIDs) from hyperspectral Raman imaging data. In addition to assigning meaningful confidence intervals on the model results, we herein demonstrate how conformal predictions can add additional diagnostics for model quality and method stability. 
    more » « less
  2. In this paper, we focus on the problem of conformal prediction with conditional guarantees. Prior work has shown that it is impossible to construct nontrivial prediction sets with full conditional coverage guarantees. A wealth of research has considered relaxations of full conditional guarantees, relying on some predefined uncertainty structures. Departing from this line of thinking, we propose Partition Learning Conformal Prediction (PLCP), a framework to improve conditional validity of prediction sets through learning uncertainty-guided features from the calibration data. We implement PLCP efficiently with alternating gradient descent, utilizing off-the-shelf machine learning models. We further analyze PLCP theoretically and provide conditional guarantees for infinite and finite sample sizes. Finally, our experimental results over four real-world and synthetic datasets show the superior performance of PLCP compared to state-of-the-art methods in terms of coverage and length in both classification and regression scenarios. 
    more » « less
  3. Abstract Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn test point with a prescribed probability. However, in practice, data-driven methods are often used to identify specific test unit(s) of interest, requiring uncertainty quantification tailored to these focal units. In such cases, marginally valid conformal prediction intervals may fail to provide valid coverage for the focal unit(s) due to selection bias. This article presents a general framework for constructing a prediction set with finite-sample exact coverage, conditional on the unit being selected by a given procedure. The general form of our method accommodates arbitrary selection rules that are invariant to the permutation of the calibration units and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We also work out computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction. 
    more » « less
  4. In regression problems where there is no known true underlying model, conformal prediction methods enable prediction intervals to be constructed without any assumptions on the distribution of the underlying data, except that the training and test data are assumed to be exchangeable. However, these methods bear a heavy computational cost—and, to be carried out exactly, the regression algorithm would need to be fitted infinitely many times. In practice, the conformal prediction method is run by simply considering only a finite grid of finely spaced values for the response variable. This paper develops discretized conformal prediction algorithms that are guaranteed to cover the target value with the desired probability and that offer a trade‐off between computational cost and prediction accuracy. Copyright © 2018 John Wiley & Sons, Ltd. 
    more » « less
  5. Conformal prediction (CP) is an important tool for distribution-free predictive uncertainty quantification. Yet, a major challenge is to balance computational efficiency and prediction accuracy, particularly for multiple predictions. We propose Leave-One-Out Stable Conformal Prediction (LOO-StabCP), a novel method to speed up full conformal using algorithmic stability without sample splitting. By leveraging leave-one-out stability, our method is much faster in handling a large number of prediction requests compared to existing method RO-StabCP based on replace-one stability. We derived stability bounds for several popular machine learning tools: regularized loss minimization (RLM) and stochastic gradient descent (SGD), as well as kernel method, neural networks and bagging. Our method is theoretically justified and demonstrates superior numerical performance on synthetic and real-world data. We applied our method to a screening problem, where its effective exploitation of training data led to improved test power compared to state-of-the-art method based on split conformal. 
    more » « less