Abstract Autonomous robots are increasingly deployed for long-term information-gathering tasks, which pose two key challenges: planning informative trajectories in environments that evolve across space and time, and ensuring persistent operation under energy constraints. This paper presents a unified framework, , that addresses both challenges through adaptive ergodic search and energy-aware scheduling in multi-robot systems. Our contributions are two-fold: (1) we model real-world variability using stochastic spatiotemporal environments, where the underlying information evolves continuously over space and time under process noise. To guide exploration, we construct a target information spatial distribution (TISD) based on clarity, a metric that captures the decay of information in the absence of observations and highlights regions of high uncertainty; and (2) we introduce ( ), an online scheduling method that enables persistent operation by coordinating rechargeable robots sharing a single mobile charging station. Unlike prior work, our approach avoids reliance on preplanned schedules, static or dedicated charging stations, and simplified robot dynamics. Instead, the scheduler supports general nonlinear models, accounts for uncertainty in the estimated position of the charging station, and handles central node failures. The proposed framework is validated through real-world hardware experiments, and feasibility guarantees are provided under specific assumptions.[Code: https://github.com/kalebbennaveed/mEclares-main.git][Experiment Video: https://www.youtube.com/watch?v=dmaZDvxJgF8]
more »
« less
VARX Granger analysis: Models for neuroscience, physiology, sociology and econometrics
Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influenced by external factors. Disentangling delayed external effects from internal dynamics within these systems is often difficult. We propose using a Vector Autoregressive model with eXogenous input (VARX) to capture delayed interactions between internal and external variables. Whereas this model aligns with Granger’s statistical formalism for testing “causal relations”, the connection between the two is not widely understood. Here, we bridge this gap by providing fundamental equations, user-friendly code, and demonstrations using simulated and real-world data from neuroscience, physiology, sociology, and economics. Our examples illustrate how the model avoids spurious correlation by factoring out external influences from internal dynamics, leading to more parsimonious explanations of these systems. For instance, in neural recordings we find that prolonged response of the brain can be explained as a short exogenous effect, followed by prolonged internal recurrent activity. In recordings of human physiology, we find that the model recovers established effects such as eye movements affecting pupil size and a bidirectional interaction of respiration and heart rate. We also provide methods for enhancing model efficiency, such as L2 regularization for limited data and basis functions to cope with extended delays. Additionally, we analyze model performance under various scenarios where model assumptions are violated. MATLAB, Python, and R code are provided for easy adoption:https://github.com/lcparra/varx.
more »
« less
- Award ID(s):
- 2020624
- PAR ID:
- 10650617
- Editor(s):
- Al_khatib, Abdullah_Mohammad Ghazi
- Publisher / Repository:
- PLOS ONE
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0313875
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have a different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs COVID-19-positive model had an AUC of 98.8%, and 92.8% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available athttps://github.com/ynaveena/COVID-19-vs-Influenzaand may have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.more » « less
-
Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available athttps://github.com/frnliang/refined_reweighing.more » « less
-
Abstract Galaxies are biased tracers of the underlying cosmic web, which is dominated by dark matter (DM) components that cannot be directly observed. Galaxy formation simulations can be used to study the relationship between DM density fields and galaxy distributions. However, this relationship can be sensitive to assumptions in cosmology and astrophysical processes embedded in galaxy formation models, which remain uncertain in many aspects. In this work, we develop a diffusion generative model to reconstruct DM fields from galaxies. The diffusion model is trained on the CAMELS simulation suite that contains thousands of state-of-the-art galaxy formation simulations with varying cosmological parameters and subgrid astrophysics. We demonstrate that the diffusion model can predict the unbiased posterior distribution of the underlying DM fields from the given stellar density fields while being able to marginalize over uncertainties in cosmological and astrophysical models. Interestingly, the model generalizes to simulation volumes ≈500 times larger than those it was trained on and across different galaxy formation models. The code for reproducing these results can be found athttps://github.com/victoriaono/variational-diffusion-cdm✎.more » « less
-
dadi-cli: Automated and distributed population genetic model inference from allele frequency spectraAbstract Summarydadi is a popular software package for inferring models of demographic history and natural selection from population genomic data. But using dadi requires Python scripting and manual parallelization of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward distributed computing. Availability and Implementationdadi-cli is implemented in Python and released under the Apache License 2.0. The source code is available athttps://github.com/xin-huang/dadi-cli. dadi-cli can be installed via PyPI and conda, and is also available through Cacao on Jetstream2https://cacao.jetstream-cloud.org/.more » « less
An official website of the United States government

