Well-resolved direct numerical simulations (DNS) have been performed of the flow in a smooth circular pipe of radius$$R$$and axial length$$10{\rm \pi} R$$at friction Reynolds numbers up to$$Re_\tau =5200$$using the pseudo-spectral code OPENPIPEFLOW. Various turbulence statistics are documented and compared with other DNS and experimental data in pipes as well as channels. Small but distinct differences between various datasets are identified. The friction factor$$\lambda$$overshoots by$$2\,\%$$and undershoots by$$0.6\,\%$$the Prandtl friction law at low and high$$Re$$ranges, respectively. In addition,$$\lambda$$in our results is slightly higher than in Pirozzoliet al.(J. Fluid Mech., vol. 926, 2021, A28), but matches well the experiments in Furuichiet al.(Phys. Fluids, vol. 27, issue 9, 2015, 095108). The log-law indicator function, which is nearly indistinguishable between pipe and channel up to$$y^+=250$$, has not yet developed a plateau farther away from the wall in the pipes even for the$$Re_\tau =5200$$cases. The wall shear stress fluctuations and the inner peak of the axial turbulence intensity – which grow monotonically with$$Re_\tau$$– are lower in the pipe than in the channel, but the difference decreases with increasing$$Re_\tau$$. While the wall value is slightly lower in the channel than in the pipe at the same$$Re_\tau$$, the inner peak of the pressure fluctuation shows negligible differences between them. The Reynolds number scaling of all these quantities agrees with both the logarithmic and defect-power laws if the coefficients are properly chosen. The one-dimensional spectrum of the axial velocity fluctuation exhibits a$$k^{-1}$$dependence at an intermediate distance from the wall – also seen in the channel. In summary, these high-fidelity data enable us to provide better insights into the flow physics in the pipes as well as the similarity/difference among different types of wall turbulence.
more »
« less
This content will become publicly available on July 10, 2026
Turbulence-resolving integral simulations for wall-bounded flows
The physical fidelity of turbulence models can benefit from a partial resolution of fluctuations, but doing so often comes with an increase in computational cost. To explore this trade-off in the context of wall-bounded flows, this paper introduces a framework for turbulence-resolving integral simulations (TRIS) with the goal of efficiently resolving the largest motions using a two-dimensional, three-component representation of the flow defined by instantaneous wall-normal integrals of velocity and pressure. Self-sustaining turbulence with qualitatively realistic large-scale structures is demonstrated for TRIS on an open-channel (half-channel) flow configuration using moment-of-momentum integral equations derived from Navier–Stokes with relatively simple closure approximations. Evidence from direct numerical simulations (DNS) suggests that TRIS can theoretically resolve$$35\,\%{-}40\,\%$$of the turbulent skin friction enhancement for friction Reynolds numbers between$$180$$and$$5200$$, without a noticeable decrease or increase as a function of Reynolds number. The current implementation of TRIS can match this resolution while simulating one flow through time in$${\sim}1$$minute on a single processor, even for very large Reynolds numbers. The framework facilitates a detailed apples-to-apples comparison of predicted statistics against data from DNS. Comparisons at friction Reynolds numbers of$$395$$and$$590$$show that TRIS generates a relatively accurate representation of the flow, while highlighting discrepancies that demonstrate a need for improving the closure models. The present results for open-channel flow represent a proof of concept for TRIS as a new approach for wall-bounded turbulence modelling, motivating extension to more general flow configurations such as boundary layers on immersed objects.
more »
« less
- Award ID(s):
- 2340121
- PAR ID:
- 10650824
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 1014
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- A40
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing.more » « less
-
Flow dynamics around a stationary flat plate near a free surface is investigated using time-resolved two-dimensional particle image velocimetry. The study examines variations in angle of attack ($$\theta =0^\circ {-}35^\circ {}$$), Reynolds number ($$Re$$$$\approx$$$$10^3$$$$-$$3$$\times$$$$10^4$$) and plate proximity to the free surface ($$H^*$$). Under symmetric boundary conditions ($$H^*\geqslant {15}$$), increasing$$\theta$$intensifies fluid–plate interaction, resulting in the shedding of leading-edge and trailing-edge vortices (LEV and TEV), each characterised by distinct strengths and sizes. In both symmetric ($$H^*\geqslant {15}$$) and asymmetric ($$H^*=5$$) boundary conditions at$$\theta \lt 5^\circ {}$$, fluid flow follows the contour of the plate, unaffected by Reynolds number. However, at$$H^*=5$$, three flow regimes emerge: the first Coanda effect (CI), regular shedding (RS) and the second Coanda effect (CII), each influenced by$$\theta$$and$$Re$$. The CI regime dominates at lower angles ($$5^\circ {}\leqslant \theta \leqslant 25^\circ {}$$) and$$Re \leqslant 12\,500$$, featuring a Coanda-induced jet-like flow pattern. As the Reynolds number increases, the flow transitions into the RS regime, leading to detachment from the upper surface of the plate. This detachment results in the formation of LEV and TEV in the wake, along with surface deformation, secondary vortices and wavy shear layers beneath the free surface. At$$22\,360\lt Re \leqslant 32\,200$$and$$5^\circ {} \leqslant \theta \leqslant 25^\circ {}$$, in the CII regime, significant surface deformation causes the Coanda effect to reattach the flow to the plate, forming a unique jet-like flow.more » « less
-
The transition to turbulence in a plane Poiseuille flow of dilute polymer solutions is studied by direct numerical simulations of a finitely extensible nonlinear elastic fluid with the Peterlin closure. The range of Reynolds number ($$Re$$)$$2000 \le Re \le 5000$$is studied but with the same level of elasticity in viscoelastic flows. The evolution of a finite-amplitude perturbation and its effects on the transition dynamics are investigated. A viscoelastic flow begins transition at an earlier time than its Newtonian counterparts, but the transition time appears to be insensitive to polymer concentration in the dilute and semi-dilute regimes studied. Increasing polymer concentration, however, decreases the maximum attainable energy growth during the transition process. The critical or minimum perturbation amplitude required to trigger transition is computed. Interestingly, both Newtonian and viscoelastic flows follow almost the same power-law scaling of$$Re^\gamma$$with the critical exponent$$\gamma \approx -1.25$$, which is in close agreement with previous studies. However, a shift downward is observed for viscoelastic flow, suggesting that smaller perturbation amplitudes are required for the transition. A mechanism of the early transition is investigated by the evolution of wall-normal and spanwise velocity fluctuations and flow structure. The early growth of these fluctuations and the formation of quasi-streamwise vortices around low-speed streaks are promoted by polymers, hence causing an early transition. These vortical structures are found to support the critical exponent$$\gamma \approx -1.25$$. Once the transition process is completed, polymers play a role in dampening the wall-normal and spanwise velocity fluctuations and vortices to attain a drag-reduced state in viscoelastic turbulent flows.more » « less
-
Empirical evidence is provided that within the inertial sublayer (i.e. logarithmic region) of adiabatic turbulent flows over smooth walls, the skewness of the vertical-velocity component$$S_w$$displays universal behaviour, being a positive constant and constrained within the range$$S_w \approx 0.1\unicode{x2013}0.16$$, regardless of flow configuration and Reynolds number. A theoretical model is then proposed to explain this behaviour, including the observed range of variations of$$S_w$$. The proposed model clarifies why$$S_w$$cannot be predicted from down-gradient closure approximations routinely employed in large-scale meteorological and climate models. The proposed model also offers an alternative and implementable approach for such large-scale models.more » « less
An official website of the United States government
