This content will become publicly available on October 7, 2026
Using water stable isotopes to identify variable mountain block–basin aquifer connectivity throughout a multi-aquifer sequence, Denver Basin, USA
- Award ID(s):
- 2333172
- PAR ID:
- 10650862
- Publisher / Repository:
- SpringerNature
- Date Published:
- Journal Name:
- Hydrogeology Journal
- ISSN:
- 1431-2174
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Denver Basin Aquifer System (DBAS) is an important groundwater resource for Front Range communities and is currently experiencing increasing demand as populations grow and surface water supplies remain limited. It is necessary to better constrain aquifer recharge mechanisms to enable sustainable use of this resource. In other sedimentary basin aquifer systems, mountain front recharge has been shown to be a significant contributor to local basin groundwater recharge. In the DBAS, inputs from the mountain block are poorly understood, and previous numerical models have treated large segments of the mountain-front boundary as impermeable. However, there exist potential connections between the mountain block and the DBAS, either by direct contact of permeable units, which would facilitate underflow recharge into the basin, or by surface water infiltration to the aquifer units where they outcrop near the mountain front. To observe spatial and temporal relationships between mountain block water and DBAS water, we use water stable isotopes and characterize the d2H and d18O of monthly precipitation, seasonal surface waters, and groundwaters in and around the Front Range and Denver Basin. The goal of this study is to determine if differences in the isotopic composition of waters across the Front Range permit the use of d18O and d2H as tracers of water flow between Front Range streams and groundwater and the DBAS. We analyzed the unique signature of mountain-block water to compare with DBAS water stable isotope data collected from Castle Rock Water municipal wells. Stable isotope ratios varied spatially and temporally, with the greatest temporal variance observed in precipitation. Streams showed great spatial variance, and less significant seasonal variance between the three seasonal sampling events conducted. Groundwaters showed very little temporal variance but had great spatial variance both between the aquifer units of the DBAS and between different locations within the mountain block crystalline aquifer. The lowest d2H and d18O ratios were measured in winter precipitation, winter streams, and groundwater samples collected from the high-elevation Front Range. Samples of DBAS groundwaters with the lowest d2H and d18O ratios indicate potential hydrogeologic connection to the mountain block. Interpreted mixing lines on a d-excess versus d18O plot support the potential DBAS-mountain block connection. The deepest aquifer units of the DBAS (Arapahoe and Laramie-Fox Hills) show the least relationship with meteoric or surface waters on both a d2H and d18O plot and the d-excess versus d18O plot and have higher d18O values than would be predicted based on their previously measured recharge ages and paleoclimate data from the region. Characterizing the spatial and temporal variations in water stable isotope signatures of the Front Range and DBAS region enhances understanding of the region’s hydrology and hydrogeology. Additionally, these results help to better inform models of aquifer recharge and promote sustainable use of the DBAS resource.more » « less
-
null (Ed.)ABSTRACT Aquatic insects cope with hypoxia and anoxia using a variety of behavioral and physiological responses. Most stoneflies (Plecoptera) occur in highly oxygenated surface waters, but some species live underground in alluvial aquifers containing heterogeneous oxygen concentrations. Aquifer stoneflies appear to be supported by methane-derived food resources, which they may exploit using anoxia-resistant behaviors. We documented dissolved oxygen dynamics and collected stoneflies over 5 years in floodplain wells of the Flathead River, Montana. Hypoxia regularly occurred in two wells, and nymphs of Paraperla frontalis were collected during hypoxic periods. We measured mass-specific metabolic rates (MSMRs) at different oxygen concentrations (12, 8, 6, 4, 2, 0.5 mg l −1 , and during recovery) for 111 stonefly nymphs to determine whether aquifer and benthic taxa differed in hypoxia tolerance. Metabolic rates of aquifer taxa were similar across oxygen concentrations spanning 2 to 12 mg l −1 ( P >0.437), but the MSMRs of benthic taxa dropped significantly with declining oxygen ( P <0.0001; 2.9-times lower at 2 vs. 12 mg l −1 ). Aquifer taxa tolerated short-term repeated exposure to extreme hypoxia surprisingly well (100% survival), but repeated longer-term (>12 h) exposures resulted in lower survival (38–91%) and lower MSMRs during recovery. Our work suggests that aquifer stoneflies have evolved a remarkable set of behavioral and physiological adaptations that allow them to exploit the unique food resources available in hypoxic zones. These adaptations help to explain how large-bodied consumers might thrive in the underground aquifers of diverse and productive river floodplains.more » « less
-
null (Ed.)Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation can improve system resilience to unexpected droughts.more » « less
An official website of the United States government
