Secure collaborative analytics (SCA) enables the processing of analytical SQL queries across data from multiple owners, even when direct data sharing is not possible. While traditional SCA provides strong privacy through data-oblivious methods, the significant overhead has limited its practical use. Recent SCA variants that allow controlled leakages under differential privacy (DP) strike balance between privacy and efficiency but still face challenges like unbounded privacy loss, costly execution plan, and lossy processing. To address these challenges, we introduce SPECIAL, the first SCA system that simultaneously ensures bounded privacy loss, advanced query planning, and lossless processing. SPECIAL employs a novelsynopsis-assisted secure processing model, where a one-time privacy cost is used to generate private synopses from owner data. These synopses enable SPECIAL to estimate compaction sizes for secure operations (e.g., filter, join) and index encrypted data without additional privacy loss. These estimates and indexes can be prepared before runtime, enabling efficient query planning and accurate cost estimations. By leveraging one-sided noise mechanisms and private upper bound techniques, SPECIAL guarantees lossless processing for complex queries (e.g., multi-join). Our comprehensive benchmarks demonstrate that SPECIAL outperforms state-of-the-art SCAs, with up to 80× faster query times, 900× smaller memory usage for complex queries, and up to 89× reduced privacy loss in continual processing.
more »
« less
This content will become publicly available on May 1, 2026
Alchemy: A Query Optimization Framework for Oblivious SQL
Data sharing opportunities are everywhere, but privacy concerns and regulatory constraints often prevent organizations from fully realizing their value. A private data federation tackles this challenge by enabling secure querying across multiple privately held data stores where only the final results are revealed to anyone. We investigate optimizing relational queries evaluated under secure multiparty computation, which provides strong privacy guarantees but at a significant performance cost. We present Alchemy, a query optimization framework that generalizes conventional optimization techniques to secure query processing over circuits, the most popular paradigm for cryptographic computation protocols. We build atop VaultDB, our open-source framework for oblivious query processing. Alchemy leverages schema information and the query's structure to minimize circuit complexity while maintaining strong security guarantees. Our optimization framework builds incrementally through four synergistic phases: (1) rewrite rules to minimize circuits; (2) cardinality bounding with schema metadata; (3) bushy plan generation; and (4) physical planning with our fine-grained cost model for operator selection and sort reuse. While our work focuses on MPC, our optimization techniques generalize naturally to other secure computation settings. We validated our approach on TPC-H, demonstrating speedups of up to 2 OOM.
more »
« less
- PAR ID:
- 10651158
- Publisher / Repository:
- VLDB Endowment
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 3021 to 3034
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we propose Longshot, a novel design for secure outsourced database systems that supports ad-hoc queries through the use of secure multi-party computation and differential privacy. By combining these two techniques, we build and maintain data structures (i.e., synopses, indexes, and stores) that improve query execution efficiency while maintaining strong privacy and security guarantees. As new data records are uploaded by data owners, these data structures are continually updated by Longshot using novel algorithms that leverage bounded information leakage to minimize the use of expensive cryptographic protocols. Furthermore, Long-shot organizes the data structures as a hierarchical tree based on when the update occurred, allowing for update strategies that provide logarithmic error over time. Through this approach, Longshot introduces a tunable three-way trade-off between privacy, accuracy, and efficiency. Our experimental results confirm that our optimizations are not only asymptotic improvements but also observable in practice. In particular, we see a 5x efficiency improvement to update our data structures even when the number of updates is less than 200. Moreover, the data structures significantly improve query runtimes over time, about ~103x faster compared to the baseline after 20 updates.more » « less
-
There is great demand for scalable, secure, and efficient privacy-preserving machine learning models that can be trained over distributed data. While deep learning models typically achieve the best results in a centralized non-secure setting, different models can excel when privacy and communication constraints are imposed. Instead, tree-based approaches such as XGBoost have attracted much attention for their high performance and ease of use; in particular, they often achieve state-of-the-art results on tabular data. Consequently, several recent works have focused on translating Gradient Boosted Decision Tree (GBDT) models like XGBoost into federated settings, via cryptographic mechanisms such as Homomorphic Encryption (HE) and Secure Multi-Party Computation (MPC). However, these do not always provide formal privacy guarantees, or consider the full range of hyperparameters and implementation settings. In this work, we implement the GBDT model under Differential Privacy (DP). We propose a general framework that captures and extends existing approaches for differentially private decision trees. Our framework of methods is tailored to the federated setting, and we show that with a careful choice of techniques it is possible to achieve very high utility while maintaining strong levels of privacy.more » « less
-
null (Ed.)Modern cloud databases adopt a storage-disaggregation architecture that separates the management of computation and storage. A major bottleneck in such an architecture is the network connecting the computation and storage layers. Two solutions have been explored to mitigate the bottleneck: caching and computation pushdown. While both techniques can significantly reduce network traffic, existing DBMSs consider them as orthogonal techniques and support only one or the other, leaving potential performance benefits unexploited. In this paper we present FlexPushdownDB (FPDB), an OLAP cloud DBMS prototype that supports fine-grained hybrid query execution to combine the benefits of caching and computation pushdown in a storage-disaggregation architecture. We build a hybrid query executor based on a new concept called separable operators to combine the data from the cache and results from the pushdown processing. We also propose a novel Weighted-LFU cache replacement policy that takes into account the cost of pushdown computation. Our experimental evaluation on the Star Schema Benchmark shows that the hybrid execution outperforms both the conventional caching- only architecture and pushdown-only architecture by 2.2×. In the hybrid architecture, our experiments show that Weighted-LFU can outperform the baseline LFU by 37%.more » « less
-
In this paper, we consider privacy-preserving update strategies for secure outsourced growing databases. Such databases allow appendonly data updates on the outsourced data structure while analysis is ongoing. Despite a plethora of solutions to securely outsource database computation, existing techniques do not consider the information that can be leaked via update patterns. To address this problem, we design a novel secure outsourced database framework for growing data, DP-Sync, which interoperate with a large class of existing encrypted databases and supports efficient updates while providing differentially-private guarantees for any single update. We demonstrate DP-Sync's practical feasibility in terms of performance and accuracy with extensive empirical evaluations on real world datasets.more » « less
An official website of the United States government
