skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: JGS2: Near Second-order Converging Jacobi/Gauss-Seidel for GPU Elastodynamics
In parallel simulation, convergence and parallelism are often seen as inherently conflicting objectives. Improved parallelism typically entails lighter local computation and weaker coupling, which unavoidably slow the global convergence. This paper presents a novel GPU algorithm that achieves convergence rates comparable to fullspace Newton's method while maintaining good parallelizability just like the Jacobi method. Our approach is built on a key insight into the phenomenon ofovershoot.Overshoot occurs when a local solver aggressively minimizes its local energy without accounting for the global context, resulting in a local update that undermines global convergence. To address this, we derive a theoretically second-order optimal solution to mitigate overshoot. Furthermore, we adapt this solution into a pre-computable form. Leveraging Cubature sampling, our runtime cost is only marginally higher than the Jacobi method, yet our algorithm converges nearly quadratically as Newton's method. We also introduce a novel full-coordinate formulation for more efficient pre-computation. Our method integrates seamlessly with the incremental potential contact method and achieves second-order convergence for both stiff and soft materials. Experimental results demonstrate that our approach delivers high-quality simulations and outperforms state-of-the-art GPU methods with 50× to 100× better convergence.  more » « less
Award ID(s):
2153851
PAR ID:
10651194
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
SIGGRAPH 2025
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
44
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries. 
    more » « less
  2. We present a GPU algorithm for deformable simulation. Our method offers good computational efficiency and penetration-free guarantee at the same time, which are not common with existing techniques. The main idea is an algorithmic integration of projective dynamics (PD) and incremental potential contact (IPC). PD is a position-based simulation framework, favored for its robust convergence and convenient implementation. We show that PD can be employed to handle the variational optimization with the interior point method e.g., IPC. While conceptually straightforward, this requires a dedicated rework over the collision resolution and the iteration modality to avoid incorrect collision projection with improved numerical convergence. IPC exploits a barrier-based formulation, which yields an infinitely large penalty when the constraint is on the verge of being violated. This mechanism guarantees intersection-free trajectories of deformable bodies during the simulation, as long as they are apart at the rest configuration. On the downside, IPC brings a large amount of nonlinearity to the system, making PD slower to converge. To mitigate this issue, we propose a novel GPU algorithm named A-Jacobi for faster linear solve at the global step of PD. A-Jacobi is based on Jacobi iteration, but it better harvests the computation capacity on modern GPUs by lumping several Jacobi steps into a single iteration. In addition, we also re-design the CCD root finding procedure by using a new minimum-gradient Newton algorithm. Those saved time budgets allow more iterations to accommodate stiff IPC barriers so that the result is both realistic and collision-free. Putting together, our algorithm simulates complicated models of both solids and shells on the GPU at an interactive rate or even in real time. 
    more » « less
  3. Whenever the concept of high-performance cloth simulation is brought up, GPU acceleration is almost always the first that comes to mind. Leveraging immense parallelization, GPU algorithms have demonstrated significant success recently, whereas CPU methods are somewhat overlooked. Indeed, the need for an efficient CPU simulator is evident and pressing. In many scenarios, high-end GPUs may be unavailable or are already allocated to other tasks, such as rendering and shading. A high-performance CPU alternative can greatly boost the overall system capability and user experience. Inspired by this demand, this paper proposes a CPU algorithm for high-resolution cloth simulation. By partitioning the garment model into multiple (but not massive) sub-meshes or domains, we assign per-domain computations to individual CPU processors. Borrowing the idea of projective dynamics that breaks the computation into global and local steps, our key contribution is a new parallelization paradigm at domains for both global and local steps so that domain-level calculations are sequential and lightweight. The CPU has much fewer processing units than a GPU. Our algorithm mitigates this disadvantage by wisely balancing the scale of the parallelization and convergence. We validate our method in a wide range of simulation problems involving high-resolution garment models. Performance-wise, our method is at least one order faster than existing CPU methods, and it delivers a similar performance compared with the state-of-the-art GPU algorithms in many examples, but without using a GPU. 
    more » « less
  4. We introduce vertex block descent, a block coordinate descent solution for the variational form of implicit Euler through vertex-level Gauss-Seidel iterations. It operates with local vertex position updates that achieve reductions in global variational energy with maximized parallelism. This forms a physics solver that can achieve numerical convergence with unconditional stability and exceptional computation performance. It can also fit in a given computation budget by simply limiting the iteration count while maintaining its stability and superior convergence rate. We present and evaluate our method in the context of elastic body dynamics, providing details of all essential components and showing that it outperforms alternative techniques. In addition, we discuss and show examples of how our method can be used for other simulation systems, including particle-based simulations and rigid bodies. 
    more » « less
  5. Abstract We propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization. Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a number of synthetic and real-world examples. 
    more » « less