To accurately describe the energetics of transition metal systems, density functional approximations (DFAs) must provide a balanced description of s- and d- electrons. One measure of this is the sd transfer error, which has previously been defined as . Theoretical concerns have been raised about this definition due to its evaluation of excited-state energies using ground-state DFAs. A more serious concern appears to be strong correlation in the 4s2configuration. Here, we define a ground-state measure of the sd energy imbalance, based on the errors of s- and d-electron second ionization energies of the 3d atoms, that effectively circumvents the aforementioned problems. We find an improved performance as we move from the local spin density approximation (LSDA) to the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) to the regularized and restored Strongly Constrained and Appropriately Normed (r2SCAN) meta-GGA for first-row transition metal atoms. However, we find large (∼2 eV) ground-state sd energy imbalances when applying a Perdew–Zunger 1981 self-interaction correction. This is attributed to an “energy penalty” associated with the noded 3d orbitals. A local scaling of the self-interaction correction to LSDA results in a balance of s- and d-errors.
more »
« less
This content will become publicly available on July 1, 2026
Computational complexity of three-dimensional Ising spin glass: Lessons from D-wave annealer
Finding an exact ground state of a three-dimensional (3D) Ising spin glass is proven to be an NP-hard problem (i.e., at least as hard as any problem in the nondeterministic polynomial-time (NP) class). Given validity of the exponential time hypothesis, its computational complexity was proven to be no less than , where is the total number of spins. Here, we report results of extensive experimentation with D-Wave 3D annealer with . We found exact ground states (in a probabilistic sense) for typical realizations of 3D spin glasses with the efficiency, which scales as with . Based on statistical analysis of low-energy states, we argue that with an improvement of annealing protocols and device noise reduction, can be increased even further. This suggests that, for , annealing devices provide most efficient way to find an exact ground state.
more »
« less
- PAR ID:
- 10651312
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We examine the bulk electronic structure of using Ni core-level hard x-ray photoemission spectroscopy combined with density functional theory dynamical mean-field theory. Our results reveal a large deviation of the Ni occupation from the formal valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant configuration is accompanied by nearly equal contributions from and states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni and orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025more » « less
-
: The reaction, determining the survival of carbon in red giants, is of interest for nuclear reaction theory and nuclear astrophysics. A specific feature of the nuclear structure is the presence of two subthreshold bound states, (6.92 MeV, ) and (7.12 MeV, ), that dominate the behavior of the low-energy factor. The strength of these subthreshold states is determined by their asymptotic normalization coefficients (ANCs), which need to be known with high accuracy. : The objective of this research is to examine how the subthreshold and ground-state ANCs impact the low-energy factor, especially at the key astrophysical energy of . The factors are calculated within the framework of the -matrix method using the code. Our total factor takes into account the and transitions to the ground state of including the interference of the subthreshold and higher resonances, which also interfere with the corresponding direct captures, and cascade radiative captures to the ground state of through four subthreshold states: , and . To evaluate the impact of subthreshold ANCs on the low-energy factor, we employ two sets of the ANCs. The first selection, which offers higher ANC values, is attained through the extrapolation process [Blokhintsev , ]. The set with low ANC values was employed by deBoer []. A detailed comparison of the factors at the most effective astrophysical energy of 300 keV is provided, along with an investigation into how the ground-state ANC affects this factor. : The contribution to the total and factors from the corresponding subthreshold resonances at are and , respectively. The correlation of the uncertainties of the subthreshold ANCs with the and factors is found. The transition of the subthreshold resonance does not depend on the ground-state ANC but interferes constructively with a broad resonance giving (for the present subthreshold ANC) an additional contribution to the total factor. Interference of the transition through the subthreshold resonance with direct capture is almost negligible for small ground-state ANC of . However, its interference with direct capture for higher ground-state ANC of is significant and destructive, contributing . The low-energy factor experiences a smaller increase when both subthfreshold and the ground-state ANCs rise together due to their anticorrelation, compared to when only the subthreshold ANCs increase. Published by the American Physical Society2024more » « less
-
Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
-
Many complex disordered systems in statistical mechanics are characterized by intricate energy landscapes. The ground state, the configuration with lowest energy, lies at the base of the deepest valley. In important examples, such as Gaussian polymers and spin glass models, the landscape has many valleys and the abundance of near-ground states (at the base of valleys) indicates the phenomenon ofchaos, under which the ground state alters profoundly when the disorder of the model is slightly perturbed. In this article, we compute the critical exponent that governs the onset of chaos in a dynamic manifestation of a canonical model in the Kardar-Parisi-Zhang [KPZ] universality class, Brownian last passage percolation [LPP]. In this model in its static form, semidiscrete polymers advance through Brownian noise, their energy given by the integral of the white noise encountered along their journey. A ground state is ageodesic, of extremal energy given its endpoints. We perturb Brownian LPP by evolving the disorder under an Ornstein-Uhlenbeck flow. We prove that, for polymers of length , a sharp phase transition marking the onset of chaos is witnessed at the critical time . Indeed, the overlap between the geodesics at times zero and that travel a given distance of order will be shown to be of order when ; and to be of smaller order when . We expect this exponent to be universal across a wide range of interface models. The present work thus sheds light on the dynamical aspect of the KPZ class; it builds on several recent advances. These include Chatterjee’s harmonic analytic theory [Superconcentration and related topics, Springer, Cham, 2014] of equivalence ofsuperconcentrationandchaosin Gaussian spaces; a refined understanding of the static landscape geometry of Brownian LPP developed in the companion paper (see S. Ganguly and A. Hammond [Electron. J. Probab. 28 (2023), 80 pp.]); and, underlying the latter, strong comparison estimates of the geodesic energy profile to Brownian motion (see J. Calvert, A. Hammond, and M. Hegde [Astérisque 441 (2023), pp. v+119]).more » « less
An official website of the United States government
