skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 3, 2026

Title: Searching for GEMS: TOI-5688 A b, a Low-density Giant Orbiting a High-metallicity Early M-dwarf*
Abstract We present the discovery of a low-density planet orbiting the high-metallicity early M-dwarf TOI-5688 A b. This planet was characterized as part of the search for transiting giant planets (R ≳ 8R) through the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. The planet was discovered with the Transiting Exoplanet Survey Satellite, and characterized with ground-based transits from Red Buttes Observatory, the Table Mountain Observatory of Pomona College, and radial velocity (RV) measurements with the Habitable-Zone Planet Finder on the 10 m Hobby Eberly Telescope and NEID on the WIYN 3.5 m telescope. From the joint fit of transit and RV data, we measure a planetary mass and radius of 124 ± 24M(0.39 ± 0.07MJ) and 10.4 ± 0.7R(0.92 ± 0.06RJ), respectively. The spectroscopic and photometric analysis of the host star TOI-5688 A shows that it is a metal-rich ([Fe/H] = 0.47 ± 0.16 dex) M2V star, favoring the core-accretion formation pathway as the likely formation scenario for this planet. Additionally, Gaia astrometry suggests the presence of a wide-separation binary companion, TOI-5688 B, which has a projected separation of ~5″ (1110 au) and is an M4V, making TOI-5688 A b part of the growing number of GEMS in wide-separation binary systems.  more » « less
Award ID(s):
2108493 2108801 2538457 2108616
PAR ID:
10651340
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society Journals
Date Published:
Journal Name:
The Astronomical Journal
Volume:
169
Issue:
3
ISSN:
0004-6256
Page Range / eLocation ID:
187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on the discovery of a transiting giant planet around the 3500 K M3-dwarf star TOI-6383A located 172 pc from Earth. It was detected by the Transiting Exoplanet Survey Satellite and confirmed by a combination of ground-based follow-up photometry and precise radial velocity measurements. This planet has an orbital period of ∼1.791 days, a mass of 1.040 ± 0.094MJ, and a radius of 1.008 0.033 + 0.036 R J , resulting in a mean bulk density of 1.26 0.17 + 0.18 g cm−3. TOI-6383A has an M dwarf companion star, TOI-6383B, which has a stellar effective temperature ofTeff∼ 3100 K and a projected orbital separation of 3126 au. TOI-6383A is a low-mass dwarf star hosting a giant planet and is an intriguing object for planetary evolution studies due to its high planet-to-star mass ratio. This discovery is part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) Survey, intending to provide robust and accurate estimates of the occurrence of GEMS and the statistics on their physical and orbital parameters. This paper presents an interesting addition to the small number of confirmed GEMS, particularly notable since its formation necessitates massive, dust-rich protoplanetary discs and high accretion efficiency (>10%). 
    more » « less
  2. Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030Mand an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms. 
    more » « less
  3. Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025Mand a radius of 0.4250 ± 0.0091R. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029Mand a radius of 0.5299 ± 0.0091R. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K). 
    more » « less
  4. Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution. 
    more » « less
  5. Abstract Transiting giant exoplanets around M-dwarf stars (GEMS) are rare, owing to the low-mass host stars. However, the all-sky coverage of TESS has enabled the detection of an increasingly large number of them to enable statistical surveys like the Searching for GEMS survey. As part of this endeavor, we describe the observations of six transiting giant planets, which include precise mass measurements for two GEMS (K2-419Ab, TOI-6034b) and statistical validation for four systems, which includes validation and mass upper limits for three of them (TOI-5218b, TOI-5616b, TOI-5634Ab), while the fourth one—TOI-5414b is classified as a “likely planet.” Our observations include radial velocities from the Habitable-zone Planet Finder on the Hobby–Eberly Telescope, and MAROON-X on Gemini-North, along with photometry and high-contrast imaging from multiple ground-based facilities. In addition to TESS photometry, K2-419Ab was also observed and statistically validated as part of the K2 mission in Campaigns 5 and 18, which provide precise orbital and planetary constraints despite the faint host star and long orbital period of ∼20.4 days. With an equilibrium temperature of only 380 K, K2-419Ab is one of the coolest known well-characterized transiting planets. TOI-6034 has a late F-type companion about 40″ away, making it the first GEMS host star to have an earlier main-sequence binary companion. These confirmations add to the existing small sample of confirmed transiting GEMS. 
    more » « less