Ferroelectric Al1−xScxN has raised much interest in recent years due to its unique ferroelectric properties and complementary metal oxide semiconductor back-end-of-line compatible processing temperatures. Potential applications in embedded nonvolatile memory, however, require ferroelectric materials to switch at relatively low voltages. One approach to achieving a lower switching voltage is to significantly reduce the Al1−xScxN thickness. In this work, ferroelectric behavior in 5–27 nm films of sputter deposited Al0.72Sc0.28N has been studied. We find that the 10 kHz normalized coercive field increases from 4.4 to 7.3 MV/cm when reducing the film thickness from 27.1 to 5.4 nm, while over the same thickness range, the characteristic breakdown field of a 12.5 μm radius capacitor increases from 8.3 to 12.1 MV/cm. The 5.4 nm film demonstrates ferroelectric switching at 5.5 V when excited with a 500 ns pulse and a switching speed of 60 ns.
more »
« less
This content will become publicly available on August 25, 2026
Characterization of ferroelectric switching in 43 nm Y-36 lithium niobate films
Lithium niobate (LN) is a promising ferroelectric material used for emerging memories and radio frequency (RF) micromechanical resonators. The ferroelectric behavior of the bulk properties of LN has been well studied, and investigations on thin films have shown promising performance. However, the macroscopic ferroelectric properties of LN films that are sub-100 nm thick, which are desired to truly harness the advantages and scalability of the material, have not been explored. Here, we report the ferroelectric properties of 43 nm ultra-thin films of Y-36 LN sandwiched between two metal electrodes. Y-36 is a particularly promising cut for RF microacoustics, but can also be employed for integrated memories and photonics. Switching occurred with an average positive coercive field (+Ec) of 0.92 MV cm−1 and an average −Ec of 0.39 MV cm−1, resulting in the ability to switch the film polarization with < 2 V. The 43 nm film maintains a large positive remanent polarization (+PR) of 58 μC·cm−2 and a -PR of 55 μC·cm−2. The thin film shows excellent endurance, maintaining a stable PR value after 1 billion polarization switching cycles. Retention characteristics also show stable PR value after 100 s. Additionally, findings indicate a power series relationship of Ec∝ Fβ with β value at 0.253 and 0.053 for +Ec and −Ec, respectively. Overall, the characterization of these ultra-thin films of LN showcase its potential for miniaturization and application to tunable RF acoustics or emerging memories.
more »
« less
- Award ID(s):
- 2104142
- PAR ID:
- 10651493
- Publisher / Repository:
- AIP publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 127
- Issue:
- 8
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work characterizes the structural, magnetic, and ferroelectric properties of epitaxial LuFeO3orthoferrite thin films with different Lu/Fe ratios. LuFeO3thin films are grown by pulsed laser deposition on SrTiO3substrates with Lu/Fe ratio ranging from 0.6 to 1.5. LuFeO3is antiferromagnetic with a weak canted moment perpendicular to the film plane. Piezoresponse force microscopy imaging and switching spectroscopy reveal room temperature ferroelectricity in Lu‐rich and Fe‐rich films, whereas the stoichiometric film shows little polarization. Ferroelectricity in Lu‐rich films is present for a range of deposition conditions and crystallographic orientations. Positive‐up‐negative‐down ferroelectric measurements on a Lu‐rich film yield ≈13 µC cm−2of switchable polarization, although the film also shows electrical leakage. The ferroelectric response is attributed to antisite defects analogous to that of Y‐rich YFeO3, yielding multiferroicity via defect engineering in a rare earth orthoferrite.more » « less
-
Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm−1) required for future applications and results in a switching energy of <2 J cm−3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec–Kay–Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices.more » « less
-
Abstract Ferroelectric tunneling junctions (FTJs) with tunable tunneling electroresistance (TER) are promising for many emerging applications, including non-volatile memories and neurosynaptic computing. One of the key challenges in FTJs is the balance between the polarization value and the tunneling current. In order to achieve a sizable on-current, the thickness of the ferroelectric layer needs to be scaled down below 5 nm. However, the polarization in these ultra-thin ferroelectric layers is very small, which leads to a low tunneling electroresistance (TER) ratio. In this paper, we propose and demonstrate a new type of FTJ based on metal/Al2O3/Zr-doped HfO2/Si structure. The interfacial Al2O3layer and silicon substrate enable sizable TERs even when the thickness of Zr-doped HfO2(HZO) is above 10 nm. We found that F-N tunneling dominates at read voltages and that the polarization switching in HZO can alter the effective tunneling barrier height and tune the tunneling resistance. The FTJ synapses based on Al2O3/HZO stacks show symmetric potentiation/depression characteristics and widely tunable conductance. We also show that spike-timing-dependent plasticity (STDP) can be harnessed from HZO based FTJs. These novel FTJs will have high potential in non-volatile memories and neural network applications.more » « less
-
Abstract Antiferroelectrics are a promising class of materials for applications in capacitive energy storage and multi‐state memory, but comprehensive control of their functional properties requires further research. In thin films, epitaxial strain and size effects are important tuning knobs but difficult to probe simultaneously due to low critical thicknesses of common lead‐based antiferroelectrics. Antiferroelectric NaNbO3enables opportunities for studying size effects under strain, but electrical properties of ultra‐thin films have not been thoroughly investigated due to materials challenges. Here, high‐quality, epitaxial, coherently‐strained NaNbO3films are synthesized from 35‐ to 250‐ nm thickness, revealing a transition from a fully ferroelectric state to coexisting ferroelectric and antiferroelectric phases with increasing thickness. The electrical performance of this phase coexistence is analyzed through positive‐up negative‐down and first‐order reversal curve measurements. Further increasing thickness leads to a fully ferroelectric state due to a strain relief mechanism that suppresses the antiferroelectricity. The potential of engineering competing ferroic orders in NaNbO3for multiple applications is evaluated, reporting significantly enhanced recoverable energy density (20.6 J cm−3at 35 nm) and energy efficiency (90% at 150 nm) relative to pure bulk NaNbO3as well as strong retention and fatigue performance with multiple accessible polarization states in the intermediate thickness films.more » « less
An official website of the United States government
