skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 16, 2026

Title: Scaling Exponents of Turbulent Static Pressure Structure Function in the Inertial Subrange
Abstract The measured variations in the turbulent static pressure structure function with scale in the roughness sublayer above a subarctic forest are empirically shown to exhibit exponents that are smaller than predicted for the inertial subrange (ISR). Three hypotheses are offered to explain these deviations. The first is based on conventional intermittency correction to the averaged turbulent kinetic energy dissipation rate, the second is based on shearing introducing deviations from locally isotropic state that must be sensed by both velocity and pressure structure functions, and the third is based on large and inertial scale pressure interactions that persist at values of within the resolvable ISR. The third hypothesis is shown to yield superior results, which allows a new formulation for to be derived that accommodates such finite interactions.  more » « less
Award ID(s):
2028633
PAR ID:
10651506
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The influence of thermal stratification on the turbulent kinetic energy balance has been widely studied; however, its influence on the turbulent stress remains less explored in the presence of tall vegetated canopies and less ideal micrometeorological conditions. Here, the impact of thermal stratification on turbulent momentum flux is considered in the roughness sublayer (RSL) and the atmospheric surface layer (ASL) using the Amazon Tall Tower Observatory (ATTO) in Brazil. A scalewise co‐spectral budget (CSB) model is developed using standard closure schemes for the pressure–velocity decorrelation. The CSB revealed that the co‐spectrum between longitudinal () and vertical () velocity fluctuations is impacted by the energy spectrum of the vertical velocity and the much less studied longitudinal heat‐flux co‐spectrum , where are temperature fluctuations and is the longitudinal wavenumber. Under stable, very stable, and dynamic–convective conditions, the scaling exponent in for the inertial subrange (ISR) scales is dominated by instead of . A near scaling in robust to large variations in thermal stratification is found, whereas the Kolmogorov ISR scaling for is not found. The scale‐dependent decorrelation time between and is dominated by in the ISR, but is nearly constant for eddies larger than the vertical velocity integral scale, regardless of stability. Implications of these findings for generalized stability correction functions that are based on the turbulent stress budget instead of the turbulent kinetic energy budget are discussed. 
    more » « less
  2. ABSTRACT Three-dimensional kinetic-scale turbulence is studied numerically in the regime where electrons are strongly magnetized (the ratio of plasma species pressure to magnetic pressure is βe = 0.1 for electrons and βi = 1 for ions). Such a regime is relevant in the vicinity of the solar corona, the Earth’s magnetosheath, and other astrophysical systems. The simulations, performed using the fluid-kinetic spectral plasma solver (sps) code, demonstrate that the turbulent cascade in such regimes can reach scales smaller than the electron inertial scale, and results in the formation of electron-scale current sheets (ESCS). Statistical analysis of the geometrical properties of the detected ESCS is performed using an algorithm based on the medial axis transform. A typical half-thickness of the current sheets is found to be on the order of electron inertial length or below, while their half-length falls between the electron and ion inertial length. The pressure–strain interaction, used as a measure of energy dissipation, exhibits high intermittency, with the majority of the total energy exchange occurring in current structures occupying approximately 20 per cent of the total volume. Some of the current sheets corresponding to the largest pressure–strain interaction are found to be associated with Alfvénic electron jets and magnetic configurations typical of reconnection. These reconnection candidates represent about 1 per cent of all the current sheets identified. 
    more » « less
  3. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  4. Abstract The turbulent static pressure spectrum as a function of longitudinal wavenumber in the roughness sublayer of forested canopies is of interest to a plethora of problems such as pressure transport in the turbulent kinetic energy budget, pressure pumping from snow or forest floor, and coupling between flow within and above canopies. Long term static pressure measurements above a sub‐arctic forested canopy for near‐neutral conditions during the winter and spring were collected and analyzed for three snow cover conditions: trees and ground covered with snow, trees are snow free but the ground is covered with snow, and snow free cover. In all three cases, it is shown that obeys the attached eddy hypothesis at low wavenumbers —with and Kolmogorov scaling in the inertial subrange at higher wavenumbers—with , where is the friction velocity at the canopy top, is the mean turbulent kinetic energy dissipation rate, is the distance from the snow top, and is the boundary layer depth. The implications of these two scaling laws to the normalized root‐mean squared pressure and its newly proposed logarithmic scaling with normalized wall‐normal distance are discussed for snow covered and snow free vegetation conditions. The work here also shows that the in the appears more extensive and robust than its longitudinal velocity counterpart. 
    more » « less
  5. Abstract In the context of incompressible fluids, the observation that turbulent singular structures fail to be space filling is known as “intermittency”, and it has strong experimental foundations. Consequently, as first pointed out by Landau, real turbulent flows do not satisfy the central assumptions of homogeneity and self-similarity in the K41 theory, and the K41 prediction of structure function exponents$$\zeta _p={p}/{3}$$ ζ p = p / 3 might be inaccurate. In this work we prove that, in the inviscid case, energy dissipation that is lower-dimensional in an appropriate sense implies deviations from the K41 prediction in everyp-th order structure function for$$p>3$$ p > 3 . By exploiting a Lagrangian-type Minkowski dimension that is very reminiscent of the Taylor’sfrozen turbulencehypothesis, our strongest upper bound on$$\zeta _p$$ ζ p coincides with the$$\beta $$ β -model proposed by Frisch, Sulem and Nelkin in the late 70s, adding some rigorous analytical foundations to the model. More generally, we explore the relationship between dimensionality assumptions on the dissipation support and restrictions on thep-th order absolute structure functions. This approach differs from the current mathematical works on intermittency by its focus on geometrical rather than purely analytical assumptions. The proof is based on a new local variant of the celebrated Constantin-E-Titi argument that features the use of a third order commutator estimate, the special double regularity of the pressure, and mollification along the flow of a vector field. 
    more » « less