skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 19, 2026

Title: Smart Ring based Digital Twin for Healthcare Application
Not AvailableThis work presents a digital twin framework based on smart rings. The compact design of smart rings with a composite sensor enables a digital twin as a viable option for mobile health monitoring, analysis and prediction of biomarkers over time. Built upon sensor data from a smart ring such as Photoplethysmogram (PPG), peripheral oxygen saturation (SpO2), physical motion, and others, a digital twin can provide continuous predictive insights. This framework enables the detection of anomalies in heart rate, monitoring of sleep patterns, evaluation of blood oxygen levels, and assessment of stress. Additionally, it integrates these findings into visual representations, enhancing the understanding of health outcomes.  more » « less
Award ID(s):
2140729
PAR ID:
10651734
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended for health management and remote operation of manufacturing systems. 
    more » « less
  2. Abstract We introduce a novel digital twin framework for predictive maintenance of physical systems with long term operations. Using monitoring tire health as an application, we show how the digital twin framework is used to enhance automotive safety and efficiency, while overcoming technical challenges using a three-step approach. Firstly, for managing the data complexity over a long operation span, we employ data reduction techniques to concisely represent physical tires using historical performance and usage data. Relying on this data, for fast real-time prediction, we train a transformer-based model offline on our concise dataset to predict future tire health over time, represented as Remaining Casing Potential (RCP). Based on our architecture, our model quantifies both epistemic and aleatoric uncertainty, providing reliable confidence intervals around predicted RCP. Secondly, we incorporate real-time data by updating the predictive model in the digital twin framework, ensuring its accuracy throughout its life span with the aid of hybrid modeling and the use of a discrepancy function. Thirdly, to assist decision making in predictive maintenance, we implement a Tire State Decision Algorithm, which strategically determines the optimal timing for tire replacement based on RCP forecasted by our transformer model. This three-step approach ensures that our digital twin not only accurately predicts the health of a system, but also continually refines its digital representation and makes predictive maintenance decisions for removal from service. Our proposed digital twin framework embodies a physical system accurately and leverages big data and machine learning for predictive maintenance, model update and decision making. 
    more » « less
  3. Arai, K. (Ed.)
    Digital twin technology has found wide applications in the aerospace industry, for fleet monitoring, diagnostics, predictive maintenance, and manufacturing. Sensing the aero-engine in a test environment is challenging, due to issues with noisy and failed sensors, introduced by extreme conditions. Downstream diagnostics and prognostics require that key sensed values are available for the duration of the test for both real-time and off-line analysis. Virtual sensors that mimic the behavior of the physical sensors provide a resilient solution in the presence of such failures. This paper describes virtual sensors designed using a low-cost digital twin platform with off-the-shelf analytical software components and libraries. The platform is a no-code environment, that permits users to rapidly experiment with different analytical models and configurations. We show that virtual sensors can emulate the behavior of the physical sensor(s) in the event of multiple physical sensor failures with high accuracy, the design of which is facilitated by the Digital Twin platform. From a process standpoint, the Digital Twin results in several advantages to the organization including the breaking down of departmental data silos, reevaluation of key assumptions regarding system design, and the standardization of monitoring process. The digital twin approach is seen to be a catalyst for reengineering the design and monitoring lifecycle for industrial organizations. 
    more » « less
  4. A digital twin (DT) is an interactive, real-time digital representation of a system or a service utilizing onboard sensor data and Internet of Things (IoT) technology to gain a better insight into the physical world. With the increasing complexity of systems and products across many sectors, there is an increasing demand for complex systems optimization. Digital twins vary in complexity and are used for managing the performance, health, and status of a physical system by virtualizing it. The creation of digital twins enabled by Modelbased Systems Engineering (MBSE) has aided in increasing system interconnectivity and simplifying the system optimization process. More specifically, the combination of MBSE languages, tools, and methods has served as a starting point in developing digital twins. This article discusses how MBSE has previously facilitated the development of digital twins across various domains, emphasizing both the benefits and disadvantages of adopting an MBSE enabled digital twin creation. Further, the article expands on how various levels of digital twins were generated via the use of MBSE. An MBSE enabled conceptual framework for developing digital twins is identified that can be used as a research testbed for developing digital twins and optimizing systems and system of systems. Keywords—MBSE, Digital Twin, Digital Shadow, Digital Model, SysML 
    more » « less
  5. Urban drainage systems face increased floods and combined sewer overflows due to climate change and population growth. To manage these hazards, cities are seeking stormwater digital twins that integrate sensor data with hydraulic models for real-time response. However, these efforts are complicated by unreliable sensor data, imperfect hydrologic models, and inaccurate rainfall forecasts. To address these issues, we introduce a stormwater digital twin system that uses online data assimilation to estimate stormwater depths and discharges under sensor and model uncertainty. We first derive a novel state estimation scheme based on Extended Kalman Filtering that fuses sensor data into a hydraulic model while simultaneously detecting and removing faulty measurements. The system’s accuracy is evaluated through a long-term deployment in Austin’s flood-prone Waller Creek watershed. The digital twin model demonstrates enhanced accuracy in estimating stormwater depths at ungauged locations and delivers more accurate near-term forecasts. Moreover, it effectively identifies and removes sensor faults from streaming data, achieving a Receiver Operating Characteristic Area Under the Curve (ROC AUC) of over 0.99 and significantly reducing the potential for false flood alarms. This study provides a complete software implementation, offering water managers a reliable framework for real-time monitoring, rapid flood response, predictive maintenance, and active control of sewer systems. 
    more » « less