skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2026

Title: Exploiting ML Task Correlation in the Minimization of Capital Expense for GPU Data Centers
Efficiently scheduling ML training tasks in a GPU data center presents a significant research challenge. Existing solutions commonly schedule such tasks based on their demanded GPU utilization, but simply assume that the GPU utilization of each task can be approximated as a constant number (e.g., by using the peak value), even though the ML training tasks commonly have their GPU utilization varying significantly over time. Using a constant number to schedule tasks can result in an overestimation of the needed GPU count and, therefore, a high capital expense for GPU purchases. To address this, we design CorrGPU, a correlation-aware GPU scheduling algorithm that considers the utilization correlation among different tasks to minimize the number of needed GPUs in a data center. CorrGPU is designed based on a key observation from the analysis of real ML traces that different tasks do not have their GPU utilization peak at exactly the same time. As a result, if the correlations among tasks are considered in scheduling, more tasks can be scheduled onto the same GPUs, without extending the training duration beyond the desired due time. For a GPU data center to be constructed based on an estimated ML workload, CorrGPU can help the operators purchase a smaller number of GPUs, thus minimizing their capital expense. Our hardware testbed results demonstrate CorrGPU’s potential to reduce the number of GPUs needed. Our simulation results on real-world ML traces also show that CorrGPU outperforms several state-of-the-art solutions by reducing capital expense by 20.88%. This work was published in the 44th IEEE International Performance Computing and Communications Conference (IPCCC 2025) in November 2025. Our paper received the Best Paper Runner-up Award from IPCCC.  more » « less
Award ID(s):
2336886
PAR ID:
10652009
Author(s) / Creator(s):
;
Publisher / Repository:
The 44th IEEE International Performance Computing and Communications Conference (IPCCC 2025), Austin, Texas, November 2025.
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Today's data centers often need to run various machine learning (ML) applications with stringent SLO (Service-Level Objective) requirements, such as inference latency. To that end, data centers prefer to 1) over-provision the number of servers used for inference processing and 2) isolate them from other servers that run ML training, despite both use GPUs extensively, to minimize possible competition of computing resources. Those practices result in a low GPU utilization and thus a high capital expense. Hence, if training and inference jobs can be safely co-located on the same GPUs with explicit SLO guarantees, data centers could flexibly run fewer training jobs when an inference burst arrives and run more afterwards to increase GPU utilization, reducing their capital expenses. In this paper, we propose GPUColo, a two-tier co-location solution that provides explicit ML inference SLO guarantees for co-located GPUs. In the outer tier, we exploit GPU spatial sharing to dynamically adjust the percentage of active GPU threads allocated to spatially co-located inference and training processes, so that the inference latency can be guaranteed. Because spatial sharing can introduce considerable overheads and thus cannot be conducted at a fine time granularity, we design an inner tier that puts training jobs into periodic sleep, so that the inference jobs can quickly get more GPU resources for more prompt latency control. Our hardware testbed results show that GPUColo can precisely control the inference latency to the desired SLO, while maximizing the throughput of the training jobs co-located on the same GPUs. Our large-scale simulation with a 57-day real-world data center trace (6500 GPUs) also demonstrates that GPUColo enables latency-guaranteed inference and training co-location. Consequently, it allows 74.9% of GPUs to be saved for a much lower capital expense. 
    more » « less
  2. Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apportion GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads' unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks' relative placement. We propose Themis, a new scheduling framework for ML training workloads. It's GPU allocation policy enforces that ML workloads complete in a finish-time fair manner, a new notion we introduce. To capture placement sensitivity and ensure efficiency, Themis uses a two-level scheduling architecture where ML workloads bid on available resources that are offered in an auction run by a central arbiter. Our auction design allocates GPUs to winning bids by trading off fairness for efficiency in the short term, but ensuring finish-time fairness in the long term. Our evaluation on a production trace shows that Themis can improve fairness by more than 2.25X and is ~5% to 250% more cluster efficient in comparison to state-of-the-art schedulers. 
    more » « less
  3. Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers. 
    more » « less
  4. Large language models have led to state-of-the-art accuracies across several tasks. However, training these models efficiently is challenging because: a) GPU memory capacity is limited, making it impossible to fit large models on even a multi-GPU server, and b) the number of compute operations required can result in unrealistically long training times. Consequently, new methods of model parallelism such as tensor and pipeline parallelism have been proposed. Unfortunately, naive usage of these methods leads to scaling issues at thousands of GPUs. In this paper, we show how tensor, pipeline, and data parallelism can be composed to scale to thousands of GPUs. We propose a novel interleaved pipelining schedule that can improve throughput by 10+% with memory footprint comparable to existing approaches. Our approach allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs (per-GPU throughput of 52% of theoretical peak). 
    more » « less
  5. Optimizing performance for Distributed Deep Neural Network (DDNN) training has recently become increasingly compelling, as the DNN model gets complex and the training dataset grows large. While existing works on communication scheduling mostly focus on overlapping the computation and communication to improve DDNN training performance, the GPU and network resources are still under-utilized in DDNN training clusters. To tackle this issue, in this paper, we design and implement a predictable communication scheduling strategy named Prophet to schedule the gradient transfer in an adequate order, with the aim of maximizing the GPU and network resource utilization. Leveraging our observed stepwise pattern of gradient transfer start time, Prophet first uses the monitored network bandwidth and the profiled time interval among gradients to predict the appropriate number of gradients that can be grouped into blocks. Then, these gradient blocks can be transferred one by one to guarantee high utilization of GPU and network resources while ensuring the priority of gradient transfer (i.e., low-priority gradients cannot preempt high-priority gradients in the network transfer). Prophet can make the forward propagation start as early as possible so as to greedily reduce the waiting (idle) time of GPU resources during the DDNN training process. Prototype experiments with representative DNN models trained on Amazon EC2 demonstrate that Prophet can improve the DDNN training performance by up to 40% compared with the state-of-theart priority-based communication scheduling strategies, yet with negligible runtime performance overhead. 
    more » « less