skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Fine-scale hydrodynamics around St. John, U.S. Virgin Islands. Part I: spatial and temporal heterogeneity in the coastal environment
Physical conditions in coastal ecosystems can vary dramatically in space and time, influencing marine habitats and species distribution. However, such physical variability is often overlooked in ecological research, particularly in coral reef research and conservation. This study aims to quantify fine-scale variability in the physical conditions of a coastal environment to provide critical context for coastal ecosystem conservation and coral reef restoration. By developing and analyzing a 50 m-resolution hydrodynamic model, we characterize the physical oceanographic environment around the tropical island of St. John, U.S. Virgin Islands. Model simulations reveal that tides, winds, and the Amazon and Orinoco River plumes, interacting with the complex coastline and seafloor topography, create significant spatial and temporal variability in the coastal environment. Differences in tidal characteristics between the north and south shores generate strong oscillatory tidal flows in the channels surrounding St. John. The mean flow around the island is predominantly westward, driven by prevailing easterly winds. Water temperature and salinity exhibit variability over relatively smalllengthscales, with characteristic alongshore length scales of 3–10 km, depending on the season. Hydrodynamic conditions also vary across multipletimescales. Strong tidal flows interacting with headland geometry produce transient eddies with strong convergent/divergent flows and variability on the scale of hours. Synoptic-scale flow variations are driven by weather events, while seasonal variations are strongly influenced by the Amazon and Orinoco River plumes. During summer and fall, these river plumes freshen the waters on the south shore of St. John, creating significant salinity differences between the north and south shores. These fine-scale physical variabilities can exert a strong influence on the coastal ecosystem and should be considered in the management of coastal resources. By providing a detailed understanding of the physical environment, this study supports efforts to conserve and restore coastal ecosystems, particularly coral reefs, in the face of dynamic and complex oceanographic conditions.  more » « less
Award ID(s):
2318921
PAR ID:
10652112
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
12
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial ( Bacteria and Archaea ) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes. 
    more » « less
  2. Coastal currents can vary dramatically in space and time, influencing advection and residence time of larvae, nutrients and contaminants in coastal environments. However, spatial and temporal variabilities of the residence time of these materials in coastal environments, such as coastal bays, are rarely quantified in ecological applications. Here, we use a particle tracking model built on top of the high-resolution hydrodynamic model described in Part 1 to simulate the dispersal of particles released in coastal bays around a key and model island study site, St. John, USVI without considering the impact of surface waves. Motivated to provide information for future coral and fish larval dispersal and contaminant spreading studies, this first step of the study toward understanding fine-scale dispersal variability in coastal bays aimed to characterize the cross-bay variability of particle residence time in the bays. Both three-dimensionally distributed (3D) and surface-trapped (surface) particles are considered. Model simulations show pronounced influences of winds, intruding river plumes, and bay orientation on the residence time. The residence times of 3D particles in many of the bays exhibit a clear seasonality, correlating with water column stratification and patterns of the bay-shelf exchange flow. When the water column is well-mixed, the exchange flow is laterally sheared, allowing a significant portion of exported 3D particles to re-enter the bays, resulting in high residence times. During stratified seasons, due to wind forcing or intruding river plumes, the exchange flows are vertically sheared, reducing the chance of 3D particles returning to the bays and their residence time in the bays. For a westward-facing bay with the axis aligned the wind, persistent wind-driven surface flows carry surface particles out of the bays quickly, resulting in a low residence time in the bay; when the bay axis is misaligned with the wind, winds can trap surface particles on the west coast in the bay and dramatically increase their residence time. The strong temporal and inter-bay variation in the duration of particles staying in the bays, and their likely role in larval and contaminant dispersal, highlights the importance of considering fine-scale variability in the coastal circulation when studying coastal ecosystems and managing coastal resources. 
    more » « less
  3. Abstract As the major form of coral reef regime shift, stony coral to macroalgal transitions have received considerable attention. In the Caribbean, however, regime shifts in which scleractinian corals are replaced by octocoral assemblages hold potential for maintaining reef associated communities. Accordingly, forecasting the resilience of octocoral assemblages to future disturbance regimes is necessary to understand these assemblages' capacity to maintain reef biodiversity. We parameterised integral projection models quantifying the survival, growth, and recruitment of the octocorals,Antillogorgia americana,Gorgonia ventalina, andEunicea flexuosa,in St John, US Virgin Islands, before, during, and after severe hurricane disturbance. Using these models, we forecast the density of populations of each species under varying future hurricane regimes. We demonstrate that although hurricanes reduce population growth,A. americana,G. ventalina, andE. flexuosaeach display a capacity for quick recovery following storm disturbance. Despite this recovery potential, we illustrate how the population dynamics of each species correspond with a longer-term decline in their population densities. Despite their resilience to periodic physical disturbance events, ongoing global change jeopardises the future viability of octocoral assemblages. 
    more » « less
  4. Abstract Major tropical storms are destructive phenomena with large effects on the community dynamics of multiple biomes. On coral reefs, their impacts have been described for decades, leading to the expectation that future storms should have effects similar to those recorded in the past. This expectation relies on the assumption that storm intensities will remain unchanged, and the impacted coral reef communities are similar to those of the recent past; neither assumption is correct. This study quantified the effects of two category five hurricanes on the reefs of St. John,U.S.Virgin Islands, where 31 yr of time‐series analyses reveal chronic coral mortality, increasing macroalgal abundance, and five major hurricanes that caused acute coral mortality. Contextualized by these trends, the effects of the most recent storms, Hurricanes Irma and Maria (September 2017), on coral cover were modest. While mean absolute coral cover declined 1–4% depending on site, these effects were not statistically discernable. Following decades of increasing abundance of macroalgae, this functional group responded to the recent hurricanes with large increases in abundance on both absolute and relative scales. Decades of chronic mortality have changed the coral assemblages of St. John to create degraded communities that are resistant to severe storms. 
    more » « less
  5. The Great Atlantic Sargassum Belt (GASB) first appeared in 2011 and quickly became the largest interconnected floating biome globally. Sargassum spp. requires both phosphorus (P) and nitrogen (N) for growth, yet the sources fueling the GASB are unclear. Here, we use coral–bound nitrogen isotopes from six coral cores to reconstruct N2 fixation, the primary source of bioavailable N to the surface ocean across the wider Caribbean over the past 120 years. Our data indicate that changes in N2 fixation were controlled by multidecadal and interannual changes in the supply of excess P from equatorial upwelling in the Atlantic. We show that the supply of P from equatorial upwelling and N from the N2 fixation response can explain the extent of the GASB since 2011. # Equatorial upwelling of phosphorus drives Atlantic N~2~ fixation and *Sargassum* blooms This Excel file contains time series data combining coral geochemical records (δ¹⁵N and δ¹⁸O), climate indices, Sargassum biomass, and major riverine outflows. The dataset integrates multiple spatially distributed records to examine long-term variability in nutrient dynamics, climate forcing, and ecological responses in the Caribbean and tropical Atlantic. Values that were not available or are missing are indicated as N/A. ## Column Reference Table File: Caribbean_data_for_DRYAD.xlsx | Column Name | Description | | :----------------------------------- | :------------------------------------------------------------------------------------------------- | | **Year\_CR\_Turneffe** | Calendar year of sampling for coral records from Turneffe Atoll (Belize) and Cahuita (Costa Rica). | | **Cahuita Costa Rica\_d18O\_ts** | Coral δ¹⁸O time series from Cahuita, Costa Rica (proxy for SST and freshwater input). | | **d15N\_CR** | Coral-bound δ¹⁵N from Cahuita, Costa Rica (proxy for nitrogen source/processing). | | **Turneffe Atoll\_d18O\_ts** | Coral δ¹⁸O time series from Turneffe Atoll, Belize. | | **d15N\_Turneffe** | Coral-bound δ¹⁵N from Turneffe Atoll. | | **Date\_MQ** | Sampling date for Martinique (MQ) site. | | **d18O\_MQ** | Coral δ¹⁸O from Martinique. | | **d15N\_MQ** | Coral δ¹⁵N from Martinique. | | **Year Bermuda** | Calendar year for Bermuda coral samples. | | **d15N Bermuda** | Coral δ¹⁵N from Bermuda. | | **Year\_CUBA** | Calendar year for Cuban coral records. | | **d15N\_CUBA** | Coral δ¹⁵N from Cuba. | | **d15N\_Mexico** | Coral δ¹⁵N from Mexico. | | **Year\_Tobago** | Calendar year for Tobago coral samples. | | **d15N\_Tobago** | Coral δ¹⁵N from Tobago. | | **Year AMM** | Year corresponding to Atlantic Meridional Mode (AMM) values. | | **AMM\_SST** | Sea Surface Temperature anomalies associated with the AMM. | | **AMM\_Wind** | Wind anomalies associated with the AMM. | | **AMO** | Atlantic Multidecadal Oscillation index value. | | **average\_year** | Averaged year across all coral records included. | | **AVERAGE\_rescaled** | Composite δ¹⁵N record rescaled across sites. | | **error\_propagated** | Propagated error estimate for the rescaled average. | | **AVERAGE\_rescaled\_noCR\_BM\_TB** | Rescaled δ¹⁵N average excluding Costa Rica, Bermuda, and Tobago. | | **error\_propagated2** | Propagated error for the reduced-site average. | | **Months Sargassum** | Month of Sargassum observation. | | **Monthly Sargassum biomass (tons)** | Monthly biomass estimates of pelagic Sargassum (tons). | | **Year\_SST\_SSS** | Year corresponding to SST/SSS data. | | **SST\_10-20N\_20-60W** | Sea Surface Temperature average over 10–20°N, 20–60°W. | | **SSS\_10-20N\_20-60W** | Sea Surface Salinity average over the same region. | | **U\_windstress\_10\_20N\_58\_62W** | Zonal wind stress (10–20°N, 58–62°W). | | **windspeed\_0\_20N\_20\_50W** | Mean wind speed (0–20°N, 20–50°W). | | **Geo\_u\_12\_18N\_60\_80W (CC)** | Geostrophic zonal velocity (12–18°N, 60–80°W), Caribbean Current proxy. | | **DU\_scav\_areaweight** | Dust deposition (scavenging flux, area-weighted). | | **DU\_ddep\_areaweight** | Dust dry deposition (area-weighted). | | **BC\_scav\_areaweight** | Black carbon scavenging flux (area-weighted). | | **Bc\_ddep\_areaweight** | Black carbon dry deposition (area-weighted). | | **BC\_total\_areaweight** | Total black carbon deposition (area-weighted). | | **DU\_total\_areaweight** | Total dust deposition (area-weighted). | | **Obidos\_Amazon\_m3\_s** | Amazon River discharge at Óbidos station (m³/s). | | **Ciudad Bolivar\_Orinoco\_m3\_s** | Orinoco River discharge at Ciudad Bolívar (m³/s). | | **Year Pstar** | Year corresponding to P\* (phosphorus excess) record. | | **Pstar** | Phosphorus excess (indicator of nutrient balance, micro Molar). | | **Amazon\_outflow\_date** | Date of Amazon outflow measurement. | | **Amazon\_outflow\_km3** | Amazon River outflow volume (km³). | | **Orinoco\_outflow\_date** | Date of Orinoco outflow measurement. | | **Orinoco\_outflow\_km3** | Orinoco River outflow volume (km³). | Links to other publicly accessible locations of the data: * [https://climexp.knmi.nl](http://...) Data was derived from the following sources: * Climate Explorer was used for gridded satellite-derived products (SST, SSS, windspeed, windstress) by using the geographical extent as indicated in the manuscript ## Code/Software No software was used for data analysis, and the codes used for figures and data analyses are available on GitHub ([https://github.com/marinejon/](https://github.com/marinejon/)) 
    more » « less