Abstract Microfluidic devices manufactured from soft polymeric materials have emerged as a paradigm for cheap, disposable and easy-to-prototype fluidic platforms for integrating chemical and biological assays and analyses. The interplay between the flow forces and the inherently compliant conduits of such microfluidic devices requires careful consideration. While mechanical compliance was initially a side-effect of the manufacturing process and materials used, compliance has now become a paradigm, enabling new approaches to microrheological measurements, new modalities of micromixing, and improved sieving of micro- and nano-particles, to name a few applications. This topical review provides an introduction to the physics of these systems. Specifically, the goal of this review is to summarize the recent progress towards a mechanistic understanding of the interaction between non-Newtonian (complex) fluid flows and their deformable confining boundaries. In this context, key experimental results and relevant applications are also explored, hand-in-hand with the fundamental principles for their physics-based modeling. The key topics covered include shear-dependent viscosity of non-Newtonian fluids, hydrodynamic pressure gradients during flow, the elastic response (deformation and bulging) of soft conduits due to flow within, the effect of cross-sectional conduit geometry on the resulting fluid–structure interaction, and key dimensionless groups describing the coupled physics. Open problems and future directions in this nascent field of soft hydraulics, at the intersection of non-Newtonian fluid mechanics, soft matter physics, and microfluidics, are noted.
more »
« less
Fluid-Elastic Interactions Near Contact at Low Reynolds Number
Interactions between fluid flow and elastic structures are important in many naturally occurring and engineered systems. This review collects and organizes recent theoretical and experimental developments in understanding fluid-structure interactions at low Reynolds numbers. Particular attention is given to the motion of objects moving in close proximity to deformable soft materials and the ensuing interplay between fluid flow and elastic deformation. We discuss how this interplay can be understood in terms of forces and torques, and harnessed in applications such as microrheometry, tribology, and soft robotics. We then discuss the interaction of soft and wet objects close to contact, where intermolecular forces and surface roughness effects become important and are sources of complexity and opportunity.
more »
« less
- Award ID(s):
- 2328628
- PAR ID:
- 10652505
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Fluid Mechanics
- Volume:
- 56
- Issue:
- 1
- ISSN:
- 0066-4189
- Page Range / eLocation ID:
- 491 to 519
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent experiments reveal that adhesive interactions can play a key role in causing surface instability in soft lubrication. Instances of instability include fluid entrapment in isolated pockets upon a soft sphere’s normal contact with a hard substrate and surface wrinkling of a soft substrate as a hard sphere slides across it. These phenomena underscore a substantial distinction between hard and soft lubrication. They are of paramount importance from a fundamental standpoint, providing an entirely new explanation for the transition mechanism from elasto-hydrodynamic to the mixed lubrication regimes. Here, we introduce a new theory to elucidate these observations. Our theory modifies the Reynolds elasto-hydrodynamic equation by incorporating adhesive interaction across the fluid layer, investigating the interplay between adhesion, fluid flow and elastic instability. Our analysis proposes the addition of a new dimensionless parameter in lubrication theory, that compares the stiffness of the adhesive interaction to that of the substrate. When this parameter exceeds unity, the soft solid surface exhibits instability to small perturba- tions in its shape. In mathematical terms, the Reynolds equation undergoes a transition from a nonlinear diffusion equation to a nonlinear wave equation at this critical point. Post-transition, the diffusivity of the nonlinear diffusion equation turns negative, rendering the problem ill- posed. We investigate the transition using the method of characteristics and present an exact analytic solution. This solution offers insights into the occurrence of a vanishing liquid film thickness at specific locations, resulting in dry contact—initiating transition to mixed lubrication.more » « less
-
Abstract An immersed boundary‐finite element with soft‐body dynamics has been implemented to study steady flow over a finite patch of submerged flexible aquatic vegetation. The flow structure interaction model can resolve the flow interactions with flexible vegetation, and hence the reconfiguration of vegetation blades to ambient flow. Flow dynamics strongly depend on two dimensionless parameters, namely vegetation density and Cauchy number (defined as the ratio of the fluid drag force to the elastic force). Five different flow patterns have been identified based on vegetation density and Cauchy number, including the limited reach, swaying, “monami” A, “monami” B with slow moving interfacial wave, and prone. The “monami” B pattern occurred at high vegetation density and is different from “monami” A, in which the passage of Kelvin‐Helmholtz billows strongly affects the vegetation interface. With soft‐body dynamics, blade‐to‐blade interactions can also be resolved. At high vegetation density, the hydrodynamic interactions play an important role in blade‐to‐blade interactions, where adjacent vegetation blades interact via the interstitial fluid pressure. At low vegetation density, direct contacts among vegetation blades play important roles in preventing unphysical penetration of vegetation blades.more » « less
-
We consider an immersed elastic body that is actively driven through a structured fluid by a motor or an external force. The behavior of such a system generally cannot be solved analytically, necessitating the use of numerical methods. However, current numerical methods omit important details of the microscopic structure and dynamics of the fluid, which can modulate the magnitudes and directions of viscoelastic restoring forces. To address this issue, we develop a simulation platform for modeling viscoelastic media with tensorial elasticity. We build on the lattice Boltzmann algorithm and incorporate viscoelastic forces, elastic immersed objects, a microscopic orientation field, and coupling between viscoelasticity and the orientation field. We demonstrate our method by characterizing how the viscoelastic restoring force on a driven immersed object depends on various key parameters as well as the tensorial character of the elastic response. We find that the restoring force depends non-monotonically on the rate of diffusion of the stress and the size of the object. We further show how the restoring force depends on the relative orientation of the microscopic structure and the pulling direction. These results imply that accounting for previously neglected physical features, such as stress diffusion and the microscopic orientation field, can improve the realism of viscoelastic simulations. We discuss possible applications and extensions to the method.more » « less
-
The behavior of permeable, elastic particles sliding along a repulsive wall is examined computationally. It is found that particles will stick or slip depending on the interplay of elastohydrodynamic and repulsive forces, and the flow in the porous particle. Particles slip when either the elastohydrodynamic lift or repulsive forces are large and create a supporting lubricating film of fluid. However, for lower values of elastohydrodynamic lift or repulsive forces, the flow within the porous particle reduces the pressure in the thin film, resulting in the particles making contact and sticking to the surface. The criteria for the slip-stick transition is presented, which can be used to design systems to promote or suppress slip for such suspensions.more » « less
An official website of the United States government

