skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Fabrication and Characterization of Metallic Glass Nanowire-Anchored Microfluidic Channels
Nanowire-based microfluidic devices combine the strengths of microfluidics and nanostructures for applications in cell biology and chemical sensing. However, their use has been limited by the complexity of the fabrication methods. In this study, we present a simple approach for fabricating and integrating metallic glass nanowires into microfluidic channels. Metallic glass nanowires were formed by thermoplastic drawing on a silicon substrate. The silicon-anchored nanowire array was sealed with a polydimethylsiloxane (PDMS) channel to create a nanowire-integrated microfluidic device. The effect of nanowire geometry on the flowrate was characterized. The experimental results were compared with computational fluid dynamics (CFD) simulations to understand the fluid–nanowire interaction. The potential of surface modification to functionalize the metallic glass nanowires was evaluated.  more » « less
Award ID(s):
2212195
PAR ID:
10652835
Author(s) / Creator(s):
;
Publisher / Repository:
ASME Digital Collection
Date Published:
Journal Name:
Journal of Micro and Nano Science and Engineering
Volume:
13
Issue:
2
ISSN:
2994-7316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents a novel technique to fabricate metallic nanowires in selective areas on a Si substrate. Thermoplastic drawing of viscous metallic glass from cavities etched in Si can produce metallic nanowires. The length and diameter of nanowires can be controlled by adjusting the drawing conditions without changing the Si mold. A thin metal shadow mask is stacked above the Si mold during thermoplastic drawing to fabricate the nanowires only in specific locations. The mask restricts the flow of metallic glass to predefined shapes on the mask, resulting in the formation of nanowires in selected areas on Si. An Al foil-based mask made by a benchtop vinyl cutter is used to demonstrate the proof-of-concept. Even a simple Al foil mask enables the positioning of metallic nanowires in selective areas as small as 200 µm on Si. The precision of the vinyl cutter limits the smallest dimensions of the patterned areas, which can be further improved by using laser-fabricated stencil masks. Results show that a single row of metallic glass nanowires can be patterned on Si using selective thermoplastic drawing. Controllable positioning of metallic nanowires on substrates can enable new applications and characterization techniques for nanostructures. 
    more » « less
  2. Silicon is an extremely important technological material, but the current industrial production of silicon by carbothermic reduction of SiO₂ is energy intensive and generates CO₂ emission. Here we developed a new and more sustainable method to produce silicon nanowires in bulk quantities via direct electrochemical reduction of CaSiO₃, an abundant and inexpensive silicon source soluble in molten salts, at a low temperature of 650 ⁰C by using low melting point ternary molten salts CaCl₂-MgCl₂-NaCl, which still retains high CaSiO₃ solubility, and a supporting electrolyte of CaO, which facilitates the transport of O²¯ anions, drastically improves the reaction kinetics and enables the electrolysis at low temperatures. The Si nanowire product can be used as high-capacity Li-ion battery anode materials with excellent cycling performance. This practical strategy at lower temperatures can be applied to other molten salt systems and also promising for waste glass and coal ash recycling. 
    more » « less
  3. Doped semiconductor nanowires are emerging as next-generation electronic colloidal materials, and the efficient manipulation of such nanostructures is crucial for technological applications. In fluid suspension, pn nanowires (pn NWs), unlike homogeneous nanowires, have a permanent dipole, and thus, experience a torque under an external DC field that orients the nanowire with its n-type end in the direction of the field. Here, we quantitatively measure the permanent dipoles of various Si nanowire pn diodes and investigate their origin. By comparing the dipoles of pn NWs of different lengths and radii, we show that the permanent dipole originates from non-uniform surface-charge distributions, rather than the internal charges at the p–n junction as was previously proposed. This understanding of the mechanism for pn NWs orientation has relevance to the manipulation, assembly, characterization, and separation of nanowire electronics by electric fields. 
    more » « less
  4. Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 μm to 10 μm for matrices and 100–200 μm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a serious fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale ‘shale-like’ microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial. 
    more » « less
  5. Abstract Deep ultraviolet (DUV) AlGaN light-emitting diodes (LEDs) are promising alternatives for production of DUV light, offering many advantages over mercury arc lamps. In this work, AlGaN nanowires with an inverse taper profile were demonstrated through a wet etching process, enabling removal of the nanowires from the growth substrate in a novel peeling process to form flexible devices. AlGaN nanowires with taper angles of ∼22° were obtained following a 70 min etch in AZ400K. Nanowire taper angle was studied as a function of etch time and nanowire top diameter. Nanowires with inverse taper were then embedded in a flexible polymer layer and removed from their growth substrate, which could enable development of high-efficiency flexible micro-LEDs. Released nanowires embedded within the polymer liftoff layer exhibit strain relaxation induced redshift due to reduction in piezoelectric polarization electric field intensity. The inverse taper structure was found to promote enhanced light extraction from the nanowire. The demonstrated flexible DUV emitters with inverse taper are shown to improve the device efficiency and allow for realization of flexible emitters through a novel fabrication process for the first time. 
    more » « less