Abstract Secondary eyewall formation (SEF) in tropical cyclones (TCs) emerges from a complex interplay of internal dynamics and environmental influences. Motivated by observations linking low inertial stability in the TC outflow layer to eyewall replacement cycles, we investigate how variations in outflow‐layer inertial stability control both the initiation and radial position of SEF. Idealized simulations reveal that reduced outflow‐layer inertial stability enhances upper‐level divergence and updraft in the TC outer core, fostering the growth of stratiform rainbands. By averaging secondary circulation over the domain grids featuring stratiform precipitation, it is explicitly shown that the strength of the mesoscale descending inflow (MDI) is greater within the widespread and more developed stratiform clouds. Such stratiform‐induced MDI can dynamically and thermodynamically broaden the tangential wind field in the lower altitudes. As a result, the ensuing increase in boundary‐layer inertial stability and inflow supplies greater absolute vorticity influx in the outer‐core region, making the tangential wind tendency peaks and the secondary eyewall intensifies at a larger radius. This study highlights the role of MDI in the coupling between the upper‐ and lower‐tropospheric dynamics.
more »
« less
This content will become publicly available on November 1, 2026
A Numerical Study on Hurricane Patricia (2015). Part II: The Topographic Effect and the Secondary Eyewall Formation
Abstract Hurricane Patricia (2015), the most powerful tropical cyclone (TC) on record, formed its secondary eyewall when its center was about 113 km offshore before its landfall at the southwestern coast of Mexico at around 2300 UTC 23 October. The ARW-WRF Model reproduced well the main features, allowing for a detailed investigation of the secondary eyewall formation (SEF). Our results show that the secondary eyewall developed from a stationary banding complex (SBC), originating from the intersection of two outer rainbands (OR1 and OR2) on the western side of the TC. This process was largely regulated and enhanced by the coastal terrain through the orographic channel effect. The results from sensitivity experiments show that increasing terrain height amplified the channel effect, accelerating airflow between the TC vortex and the terrain, strengthening convergence into OR1, and promoting midlevel descending inflow conducive to convective enhancement downstream in the SBC. While the terrain weakened low-level moisture transport, it also positioned OR2 closer to OR1, facilitating the formation of the SBC and accelerating the moat development. Backward trajectory analysis revealed that the inflows below the upper-level outflow layers of both the primary and secondary eyewalls contributed to moat development. With increasing terrain height, dry air transported into the moat region by the upper-level inflows from the secondary eyewall significantly increased, further suppressing convection in the moat. These findings offer novel insights into the understanding of SEF processes and underscore the importance of the topographic effects in shaping outer rainband organization, contributing to the moat and SEF.
more »
« less
- Award ID(s):
- 1834300
- PAR ID:
- 10652991
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 153
- Issue:
- 11
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 2375 to 2395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study examines axisymmetric and asymmetric aspects of secondary eyewall formation (SEF) in tropical cyclones (TCs) by applying a nonlinear boundary layer model to tangential wind composites of observed TCs with and without SEF. SEF storms were further analyzed at times prior to and after SEF, as defined by the emergence of a secondary maximum in axisymmetric tangential wind. The model is used to investigate the steady‐state boundary layer response to the free‐tropospheric pressure forcing derived from observed tangential wind fields. The axisymmetric response to the Post‐SEF wind field displayed a secondary updraft maximum associated with a mature secondary eyewall; the model correctly produced no secondary updraft for non‐SEF storms. The Pre‐SEF response also exhibited a secondary updraft associated with an incipient secondary eyewall largely due to the broadened outer tangential wind field that commonly precedes SEF events. The asymmetric wind fields and model response were analyzed relative to the 850–200 hPa environmental wind shear vector. In Pre‐SEF storms, the tangential wind field displayed a broadened tangential wind structure in the downshear quadrants. The boundary layer response shows a downwind shift toward the left‐of‐shear quadrants, exhibiting the clearest secondary maxima in updrafts, tangential wind, and radial inflow. This left‐of‐shear response was the leading contributor to the secondary eyewall signals in the Pre‐SEF axisymmetric response. Sensitivity analyses confirmed the robustness of these asymmetric signals. These findings suggest that enhanced tangential wind and boundary layer updrafts in the left‐of‐shear sectors may be early indicators and critical features of SEF in sheared TCs.more » « less
-
Abstract The timescale of eyewall replacement cycle (ERC) is critical for the prediction of intensity and structure changes of tropical cyclones (TCs) with concentric eyewall (CE) structures. Previous studies have indicated that the moat width can regulate the interaction between the inner and outer eyewalls and has a salient relationship with the ERC timescale. In this study, a series of sensitivity experiments are carried out to investigate the essential mechanisms resulting in the diversity of the duration of CEs using both simple and full‐physics models. Results reveal that a larger moat can induce stronger inflow under the same inner eyewall intensity by providing a longer distance for air parcels to accelerate in the boundary layer. Thus, there is greater inward absolute vorticity flux to sustain the inner eyewall. Besides, the equivalent potential temperature (θe) budget indicates that the vertical advection and surface flux of moist entropy can overbalance the negative contribution from the horizontal advection and lead to an increasing trend ofθein the inner eyewall. This suggests that the thermodynamic process in the boundary layer is not indispensable to the inner eyewall weakening. It is also found that the contraction rate of the secondary eyewall, which directly influences the moat width, is subject to the activity of outer spiral rainbands. By directly introducing positive wind tendency outside the eyewall and indirectly promoting a vertically tilted eyewall structure, active convection in the outer region will impede or even suspend the contraction of the outer eyewall and hence extend the ERC timescale.more » « less
-
Just before making landfall in Puerto Rico, Hurricane Maria (2017) underwent a concentric eyewall cycle in which the outer convective ring appeared robust while the inner ring first distorted into an ellipse and then disintegrated. The present work offers further support for the simple interpretation of this event in terms of the non-divergent barotropic model, which serves as the basis for a linear stability analysis and for non-linear numerical simulations. For the linear stability analysis the model’s axisymmetric basic state vorticity distribution is piece-wise uniform in five regions: the eye, the inner eyewall, the moat, the outer eyewall, and the far field. The stability of such structures is investigated by solving a simple eigenvalue/eigenvector problem and, in the case of instability, the non-linear evolution into a more stable structure is simulated using the non-linear barotropic model. Three types of instability and vorticity rearrangement are identified: (1) instability across the outer ring of enhanced vorticity; (2) instability across the low vorticity moat; and (3) instability across the inner ring of enhanced vorticity. The first and third types of instability occur when the rings of enhanced vorticity are sufficiently narrow, with non-linear mixing resulting in broader and weaker vorticity rings. The second type of instability, most relevant to Hurricane Maria, occurs when the radial extent of the moat is sufficiently narrow that unstable interactions occur between the outer edge of the primary eyewall and the inner edge of the secondary eyewall. The non-linear dynamics of this type of instability distort the inner eyewall into an ellipse that splits and later recombines, resulting in a vorticity tripole. This type of instability may occur near the end of a concentric eyewall cycle.more » « less
-
Key Points Lateral entrainment of air from the moat region into eyewall and rainbands of a tropical cyclone (TC) satisfies the instability criterion Positive buoyancy flux induced by the entrainment is an important source of turbulent kinetic energy for the eyewall and rainband clouds Lateral entrainment instability should be included in turbulent mixing parameterizations in TC forecast modelsmore » « less
An official website of the United States government
