skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Quantitative Analysis of Protein Fouling in Virus Removal Filtration Membranes Through Electron Tomography
Protein fouling can significantly reduce the filtrate flux, capacity, and virus retention during processing of plasma- or mammalian cell-derived biopharmaceuticals through virus removal filters. We use focused ion beam (FIB) milling and scanning electron microscopy (SEM) to directly evaluate changes in 3D pore structure in a Viresolve® Pro membrane due to fouling by human serum immunoglobulin G. Protein fouling causes a significant reduction in the membrane porosity, which decreases by approximately 40% in the size-selective region near the exit of the highly asymmetric Viresolve® Pro membrane after the filter is fouled to 90% flux decline. There is a corresponding reduction in the number of small pores by more than a factor of two. Model simulations of flow and particle transport in the protein-fouled membrane are in good agreement with independent experimental measurements of the permeability and location of particle capture. Simulations show an upstream shift in the location of nanoparticle capture (away from the filter exit) by about 0.4 µm for the membrane fouled to 90% flux decline. This is due to pore constriction from protein deposition, highlighting how fouling redistributes flow paths within the membrane. These results demonstrate the capability of using FIB-SEM to directly evaluate the effects of protein fouling on the 3D pore structure in virus removal filters, providing important insights into how protein fouling alters the performance of these highly selective membranes.  more » « less
Award ID(s):
2310832 1841474
PAR ID:
10653216
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Membranes
Volume:
15
Issue:
12
ISSN:
2077-0375
Page Range / eLocation ID:
369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The performance of virus filters is often determined by the extent of protein fouling, which can affect both filtrate flux and virus retention. However, the mechanisms governing changes in virus retention in the presence of proteins are still not well understood. The objective of this work was to examine the effect of proteins on virus retention by both asymmetric (Viresolve® NFP and Viresolve® Pro) and relatively homogeneous (Ultipor® DV20 and PegasusTM SV4) virus filtration membranes. Experiments were performed with bacteriophage ϕX174 as a model parvovirus and human serum immunoglobulin G (hIgG) as a model protein. The virus retention in 1 g/L hIgG solutions was consistently less than that in a protein-free buffer solution by between 1 to 3 logs for the different virus filters. The virus retention profiles for the two homogeneous membranes were very similar, with the virus retention being highly correlated with the extent of flux decline. Membranes prefouled with hIgG and then challenged with phages also showed much lower virus retention, demonstrating the importance of membrane fouling; the one exception was the Viresolve® Pro membrane, which showed a similar virus retention for the prefouled and pristine membranes. Experiments in which the protein was filtered after the virus challenge demonstrated that hIgG can displace previously captured viruses from within a filter. The magnitude of these effects significantly varied for the different virus filters, likely due to differences in membrane morphology, pore size distribution, and chemistry, providing important insights into the development/application of virus filtration in bioprocessing. 
    more » « less
  2. Abstract Virus filtration is a crucial step in ensuring the high levels of viral clearance required in the production of biotherapeutics produced in mammalian cells or derived from human plasma. Previous studies have reported that virus retention is often reduced in the presence of therapeutic proteins due to membrane fouling; however, the underlying mechanisms controlling this behavior are still not well understood. Experimental studies were performed with a single layer of the commercially available dual‐layer PegasusTMSV4 virus removal filter to more easily interpret the experimental results. Bacteriophage ФX174 was used as a model parvovirus, and human immunoglobulin (hIgG) and Bovine Serum Albumin (BSA) were used as model proteins. Data obtained with 5 g/L solutions of hIgG showed more than a 100‐fold reduction in virus retention compared to that in the protein‐free solution. Similar effects were seen with membranes that were pre‐fouled with hIgG and then challenged with ФX174. The experimental data were well‐described using an internal polarization model that accounts for virus capture and accumulation within the virus filter, with the hIgG nearly eliminating the irreversible virus capture while also facilitating the release of previously captured virus. These results provide important insights into the performance and validation of virus removal filters in bioprocessing. 
    more » « less
  3. Abstract Chinese hamster ovary (CHO) cells are among the most common cell lines used for therapeutic protein production. Membrane fouling during bioreactor harvesting is a major limitation for the downstream purification of therapeutic proteins. Host cell proteins (HCP) are the most challenging impurities during downstream purification processes. The present work focuses on identification of HCP foulants during CHO bioreactor harvesting using reverse asymmetrical commercial membrane BioOptimal™ MF‐SL. In order to investigate foulants and fouling behavior during cell clarification, for the first time a novel backwash process was developed to effectively elute almost all the HCP and DNA from the fouled membrane filter. The isoelectric points (pIs) and molecular weights (MWs) of major HCP in the bioreactor harvest and fouled on the membrane were successfully characterized using two‐dimensional gel electrophoresis (2D SDS‐PAGE). In addition, a total of 8 HCP were identified using matrix‐assisted laser desorption/ionization‐mass spectroscopy (MALDI‐MS). The majority of these HCP are enzymes or associated with exosomes, both of which can form submicron‐sized particles which could lead to the plugging of the filters. 
    more » « less
  4. Abstract Tangential flow filtration is advantageous for bioreactor clarification as the permeate stream could be introduced directly to the subsequent product capture step. However, membrane fouling coupled with high product rejection has limited its use. Here, the performance of a reverse asymmetric hollow fiber membrane where the more open pore structure faces the feed stream and the barrier layer faces the permeate stream has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of Chinese hamster ovary cell feed streams has been investigated under conditions that could be expected in fed batch operations. The performance of the reverse asymmetric membrane is compared to that of symmetric hollow fiber membranes with nominal pore sizes of 0.2 and 0.65 μm. Laser scanning confocal microscopy was used to observe the locations of particle entrapment. The throughput of the reverse asymmetric membrane is significantly greater than the symmetric membranes. The membrane stabilizes an internal high permeability cake that acts like a depth filter. This stabilized cake can remove particulate matter that would foul the barrier layer if it faced the feed stream. An empirical model has been developed to describe the variation of flux and transmembrane pressure drop during filtration using reverse asymmetric membranes. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor clarification. 
    more » « less
  5. null (Ed.)
    We study the influence of a membrane filter's internal pore structure on its flow and adsorptive fouling behaviour. Membrane performance is measured via (1) comparison between volumetric flow rate and throughput during filtration and (2) control of concentration of foulants at membrane pore outlets. Taking both measures into account, we address the merits and drawbacks of selected membrane pore structures. We first model layered planar membrane structures with intra-layer pore connections, and present comparisons between non-connected and connected structures. Our model predicts that membrane filters with connected pore structures lead to higher total volumetric throughput than those with non-connected structures, over the filter lifetime. We also provide a sufficient criterion for the concentration of particles escaping the filter to achieve a maximum in time (indicative of a membrane filter whose particle retention capability can deteriorate). Additionally, we find that the influence of intra-layer heterogeneity in pore-size distribution on filter performance depends on the connectivity properties of the pores. 
    more » « less